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This paper constructs a unified family of nonconforming finite element spaces for HA* in R” (0 <
k < n, n>1). The spaces employ piecewise Whitney forms as shape functions, and include the
lowest-degree Crouzeix-Raviart element space for HA®. Optimal approximations and uniform discrete
Poincaré inequalities are presented. Based on the newly constructed finite element spaces, discrete
de Rham complexes with commutative diagrams, and the discrete Helmholtz decomposition and
Hodge decomposition for piecewise constant spaces are established. All discrete operators involved
are local, acting cell-wise. A framework of nonconforming finite element exterior calculus is then
established, and is naturally connected to the classical conforming one. The cooperation of conforming
and nonconforming finite element spaces leads to new discretization schemes of the Hodge Laplace
problem. The new finite element spaces are constructed by a novel approach that seeks to mimic the dual
connections between adjoint operators; novel construction methods and basic estimations are presented.
Although the new spaces do not fit Ciarlet’s finite element definition, they admit locally supported basis
functions each spanning at most two adjacent cells, which makes the computation of the local stiffness
matrices and the assembling of the global stiffness matrix implementable by following the standard
procedure. Some numerical experiments are given to show the implementability and the performance
of the new kind of spaces.

Keywords: exterior differential form; nonconforming finite element space; discrete Poincaré inequality;
discrete de Rham complex; commutative diagram; discrete Helmholtz-Hodge decomposition; discrete
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1. Introduction

Conforming finite elements for exterior differential forms have been extensively studied, based on
which conforming finite element exterior calculus has been well established; we refer to, e.g.,
[3,4, 6,9, 23] and the references therein for details. Naturally, the research has now reached a point
where extension is appropriate to nonconforming methods. Well-designed nonconforming methods can
possess many characteristics that conforming ones lack, with the (lowest-degree) Crouzeix-Raviart
element [17] being a typical example. The Crouzeix-Raviart element, originally designed for H'! which
is equivalent to HA? for 0-forms, is among the most widely used finite elements. It can be distinguished
from conforming ones with kinds of practically crucial properties, including, e.g.,
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» Different from conforming interpolators discussed in [13, 16, 19, 20, 22, 27, 28, 38], the Crouzeix-
Raviart element admits a cell-wise defined' stable interpolator which works for functions in H'
without using the inter-cell regularization, smoothing or averaging techniques.

o In the construction of Helmholtz orthogonal decomposition of piecewise constants, which cannot
be established when restricted to conforming element spaces, the lowest-degree Crouzeix-Raviart
element plays an irreplaceable role [5, 31].

« Applied to the computation of Laplacian eigenvalues, the lowest-degree Crouzeix-Raviart element
scheme may yield asymptotic lower bounds to the exact eigenvalues [2], which differs essentially
from conforming ones.

These properties may indicate the potential theoretical and practical significance of nonconforming
methods compared to conforming ones. This paper investigates nonconforming finite element
discretizations for general exterior differential forms, and particularly, generalizes the Crouzeix-Raviart
element for HA? to a unified family for HA* for 0 < k < n in R” by a novel approach. Nonconforming
finite element exterior calculus can then be established based on these spaces.

Attempts to generalize the Crouzeix-Raviart elements have been devoted to the H(div) problems
[1, 35, 39]. Following directly from Crouzeix-Raviart element, these elements all use the integral of
the normal components as nodal parameters. For these elements, the crucial property of the Crouzeix-
Raviart element, namely cell-wise defined nodal interpolator, cannot be validated for functions with
only H (div) regularity, nor can an associated discrete Helmholtz decomposition be established. Further,
if we try to embed such an H(div) element into a discretized de Rham complex, which is a crucial issue
for the discretization of exterior differential operators, the continuity restriction for the corresponding
H'! finite element is the evaluation at vertices. As well known, the continuity of the evaluation at vertices
is neither sufficient nor necessary for a finite element to work for H'! problems, and the weak continuity
condition for these H(div) elements is not as reasonable as the original Crouzeix-Raviart element. It
is suggested in [11] that vector Crouzeix-Raviart element can be used for H(curl) in three dimension;
though, the same obstacles can be come across.

Different from existing attempts, instead of establishing the space by imposing local continuity
primally, the main ingredient of the new approach is to reveal and mimic the relationship between
adjoint operators, inspired by a new interpretation of the Crouzeix-Raviart element. Actually, beyond
being a consequence, the well-known integration by part formula, on the lowest-degree Crouzeix-

Raviart element space VhCR and the lowest-degree Raviart-Thomas element space Z}fg on a grid ¥,

Yy /whgﬁjt/vhdivgﬁzo, for v, € VR and 1, € VRT (1.1)
JT T

7%,

also serves as a sufficient condition for a piecewise linear polynomial function to belong to VhCR,
in accordance with the adjoint relation between (div,Hp(div)) and (V,H'). Namely, VR can be
equivalently figured out as

VhCR = < vy, is piecewise linear, such that Z / Vvt +/ vpdive, =0V1, € L/I,}g . (1.2)
TE%/, T T

' Here and in the sequel, by “locally defined” or “cell-wise defined”, we mean if two functions u and v are equal on a cell T, then
their respective interpolations Iu and Ilv are equal on 7'.
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This observation then hints quite a natural approach to construct a finite element space by constructing
discrete adjoint relationships. By the aid of the existing conforming Whitney forms, in this paper, the
methodology can be directly applied to design a family of nonconforming finite element spaces for HA*
with piecewise Whitney forms.

The approach of inheriting the adjoint relationship can actually lead to natural advantages. Several
properties emerge naturally from the construction of the finite element spaces. A basic one is the
consistency property, which follows directly. Then, cell-wise defined global interpolators can be
constructed for functions in HAX with no extra regularity needed; the interpolators are stable in broken
HAF norm and provide optimal approximation to all functions in HA*. Combined with the global
interpolators, these newly constructed spaces are connected by piecewise operations of d* to form
nonconforming finite element de Rham complexes, as well as commutative diagrams with the de Rham
Hilbert complexes. Further, the Helmholtz and Hodge decompositions of the piecewise constant k-forms
follow from the discrete adjoint relation. It is worth noting that the Poincaré-Leftschetz duality Theorem
26 can be reconstructed by the respective discrete harmonic spaces by conforming and nonconforming
finite element spaces. With the structural properties given in Section 3, a framework of nonconforming
finite element exterior calculus is established, and is naturally linked to the classical conforming one by
the discrete complex duality (3.5) and the discrete Poincaré-Lefschetz duality.

On the other hand, we have to remark that, in contrast to the conforming Whitney forms,
the nonconforming finite element spaces defined in this paper may not correspond to a “finite
element”(triple) in Ciarlet’s sense [15]. Therefore, some basic features of the finite element methods
cannot be dealt with in standard ways. Two main obstacles are: first, it is not any longer straightforward
to figure out the basis functions of the global finite element spaces, and second, it is difficult, if not
impossible, to follow the standard procedure to prove the uniform discrete Poincaré inequalities. In
this paper, we develop nonstandard approaches to circumvent the obstacles. For every newly designed
finite element space, we prove the existence of a set of basis functions which each is supported on
no more than two cells, and the relevant numerical scheme can be implemented by the standard
routine for the finite element in Ciarlet’s sense. Some numerical experiments are provided to verify the
implementability of the new finite element functions. We also prove that the constant of the discrete
Poincaré inequality of a newly designed finite element space is asymptotically equal to that of an
associated conforming Whitney form space which is proved uniformly bounded; it then follows that
the discrete Poincaré inequality holds uniformly for the new spaces.

Since nonconforming finite element spaces are constructed for (d*, HAX) and particularly discrete
Hodge decompositions are constructed accordingly, new discretization schemes can be developed.
Meanwhile, dual structures can be further investigated with more applications. We investigate the dual
roles of conforming and nonconforming spaces by constructing some new finite element schemes for
the Hodge Laplace problem with nonconforming spaces. The two finite element spaces connect with
each other within their respective discretization schemes through classical mixed formulations, and their
roles are complementary within the discretization scheme of a new mixed formulation.

The remainder of the paper is organized as follows. In the remaining part of this section, we collect
some preliminaries and notations. In Section 2, we use the two-dimensional H (div) problem for instance
to illustrate the main features of the new type of finite element spaces, including the construction of
the new space, the locally-supported basis functions, the basic error estimation by cell-wise defined
interpolators, and numerical experiments for the implementability of the new finite element functions.
In Section 3, a family of nonconforming finite element spaces are constructed for HA* in R”, 0 < k < n,
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with the Crouzeix-Raviart element space being the one for HA®. Optimal approximation and uniform
Poincaré inequalities are established. Based on these finite element spaces, theory of nonconforming
finite element exterior calculus is constructed, including the Helmholtz/Hodge decomposition for
piecewise constant k-forms, the discrete Poincaré-Lefschetz duality, the discrete de Rham complex
and commutative diagrams. Then in Section 4, the newly-designed nonconforming spaces are used for
the discretization of the Hodge Laplace problem. The correspondent and complementary connections
between the conforming and nonconforming spaces are investigated with classical and new mixed
formulations. Finally, in Section 5, some conclusions and discussions are given.

Preliminaries and Notations In the sequel of the paper, we use .4 and Z to denote the null space and
the range of certain operators. Namely, for example, .4 (T,D) denotes {v e D : Tv =0}, and Z(T,D)
denotes {Tv : v € D} . For a Hilbert space H, we use the notations €y and S;; to denote the orthogonal
summation and orthogonal difference; namely, for two spaces A and B in H, the presentation A @ﬁ B
implies that A and B are orthogonal in H, and evaluates as the direct summation of A and B; for
ACBCH, B efi A evaluates as the orthogonal complementation of A in B. The subscript H can
occasionally be dropped.

For Q a domain and T C Q, we use ES* : L'(T) — L'(Q) for the extension operator defined by
ESv =von T and Ef*v = 0 elsewhere. For V; C L'(T), we use E*Vr for short of Z(ES*, Vr).

We use d* and & for the exterior differential and codifferential operators on AX. §; = (—1)* «
d"*x, % being the Hodge star operator. Denote, on the domain Z,

HAKE) := {w e PANE) do € L2Ak+1(3)} L 0<k<n—1,
and by HyA¥(Z) the closure of 65°A*(Z) in HA¥(Z). Denote
HAKE) = {u e L2ANE): S € LzAk_l(E)} , 1<k<n,

and H{A¥(Z) the closure of €;°A¥(E) in H*A¥(Z). E can occasionally be dropped. The spaces
of harmonic forms are $HAF := A (dX, HAK) ot (a1 HAFY), $HoAF = 4 (d* HyAr) ot
Z(d HoNY), 95 Ak = (84, H*AY) &1 #8141, H AY), and H{AF == A (8, HAK) o+
R (8141, H; A1), As the Helmholtz decompositions hold that

N (A HARY @1 2811, HINTY) = L2AF = 2(d~" HAY) @t 0 (8, HYAF),

it follows that $HAF = $HFA* and HoAF = $H*A*. This is the Poincaré-Lefschetz duality(cf. [4, Section
4.5.5]) which links two dual complexes connected by d* and &y, respectively.
The space of Whitney forms is denoted as ([3, 4, 6]) &, A = oAk + K(?}’OA]‘H), where the
k
Koszul operator K is K(dx*! A+ A dx%) =} (=1)7 1% dx® A= A dx %=1 A dXBHA - A dx® for
j=1

o €lXy, = {a =(ay,...,0) € N:l<op<ap < <oy < n, N the setofintegers}, the set of
k-indices, k < n. Note that & AY = 2, A0 and PN = PN, Denote the Whitney forms associated
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with the operator d by .@f‘*Ak = x(P; A"F). Note that
N (@ PN = 2@, AT = PoAR = B (8, PN = (8, 2T AR). (13)

Denote, on a simplicial subdivision ¢, of Q, 0 < k < n,

P NG) = P ER P ANT), and 2] A G,) EBE%@* “AN(T). (1.4)
Te9, T€%9
Here and in the sequel, the subscript “-;,” denotes mesh dependence. In particular, an operator with the
subscript “-;” indicates that the operatlon is performed cell by cell.

The conformmg finite element spaces with Whitney forms are WA= P (%) NH AX, WioAx =
P (%) NHoA', WiAR .= 207 (4,) NH*AX, and Wi, AF := 227 (4,) N Hi A*. Note that the spaces
defined this way are respectively identical to the finite element spaces with piecewise Whitney forms
defined by the continuity of the nodal parameters [4]. Denote the spaces of discrete harmonic forms
by $,AF := (A5, W,AR) o+ Z(d1, WA, $9,0AF := A7 (dF, WioAR) o1 2(d51, WAk,
;N = N (81, WiA) &L R (811, WiAMTY), and 950 AL := A (85, WioAR) 6 Z (i1, WipAT).

Given T asimplex, denote, associated with T', #/ = x/ — ¢, where c; is a constant such that fT ¥ =0,
and k7, a Koszul operator on 7', by for @ € IXy ,

(=) UHDF% dx AL dx%1 A dx% A A dx%.

AM»

Kkr(dx¥TA - A dx%) =
1

J

Then d* i (dx* A ... dx%) = kdx® A...dx%. By the aid of k7, we can rewrite the Whitney forms
as P AK(T) = PyAK(T) &t kr (PoAM(T)), orthogonal in L2AX(T). We further use kj, to denote

the operation of x7 cell by cell. Denote k8 :=xokKo *, K? 1= %0 K7 0%, and K‘g 1= %0 K}, O*.

2. A nonconforming H(div) finite element space

In this section, we use the two-dimensional H (div) problem for instance to illustrate the main features
of the new type of finite element spaces studied in this paper.

Let Q C R? denote a polygon. As usual, we use V and div to denote the gradient operator and
divergence operator, respectively, and we use H' (Q), H} (Q), H(div,Q), Hy(div,Q), L*(Q) and L3(Q)
to denote certain Sobolev (Lebesgue) spaces. For here, we denote vector-valued quantities by undertilde
“.” 'We use (-,-) with subscripts to represent L? inner product.

For this planar domain, we specifically use .7}, for a shape-regular subdivision of Q with mesh size &
that consists of triangles, such that Q = Uy 7, T and every boundary vertex is connected to at least one
interior vertex. Denote by &, é“’h, <§}f’, Zh, 3&” " and 3&”,1 the set of edges, interior edges, boundary edges,
vertices, interior vertices and boundary Vertices, respectively. We use n for the outward unit normal
vector with respect to a triangle.

Let V}l denote the continuous piecewise linear element space, and ZET denote the Raviart-Thomas
[36] element space of lowest degree on 7. Denote V) := VI N H} (Q) and VRT := VT 1 Hy (div, Q).
On a triangle T, denote the space of the lowest-degree Raviart-Thomas shape functions by RT(T) :=
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span{a+fBx:a € R? B € R}. Then

Z(div,RT(T)) =R = A (V,P(T)), and A (div,RT(T)) = R* = Z(V,P,(T)).

Denote RT(.%},) := @ ERT(T). We define the nonconforming finite element spaces
T,

RT} = {:CJ, eRT(S,) : Z (2, VVi) 7 + (divey, viy)r =0, Vv, € V},O} ,
Te),

and

RTY := {;ﬁ ERT(Z): Y, (T4, VAT + (dives, vi)r =0, Vv, € V,ﬁ} :
Teg,

2.1

2.2)

2.3)

Note that RT}° does not confirm to Ciarlet’s finite element definition. In Section 2.1, we will present
sets of locally supported basis functions for each of RT}® and RT}j for their implementability. In
Section 2.2, we establish a cell-wise defined projective interpolator for H(div), and prove optimal
approximation and stability properties of RT}¢ and RT}g directly without the aid of the classical

Raviart-Thomas element.

2.1. Locally supported global basis functions of RT}; and RT}*
2.1.1. Structures of RT(T') on a triangle T and RT(J},) on .},

Foracell T € 9, we use a; (located at ¢;) and ¢; for the vertices and opposite edges, h; being the height
on e;, i = 1:3. Let A; be the barycentric coordinates. Let |¢;| and |#;| denote the length of e; and /;,

respectively, and let S denote the area; cf. Figure 1.

+1/|€||

77/ - -

+1/|€2|

as

- ~
Y - >
s a 3 3 3

a3

FIG. 1. Tlustration of the three basis functions of RT(7) on a cell T. We pay particular attention to the sign of the outward

normal component at every edge.
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Denote
1

28
Then, {b7',i = 1,2,3} form a basis of RT(T'). Particularly, b7’ -n;l,, = (1 —28;;)/le,|, and

bi = —<(x+ai—aj—a), i=1,2,3, {i,j,k} ={1,2,3}. 2.4)

(b;’,V)L )T+(lebT77L )r =0, 1<i,j<3. 2.5)
The identities (2.1) confirm the existence of a basis of RT(7') that satisfies the dual relation (2.5), and

(2.4) further gives the precise formulation of them. See Figure 1 for the illustrations and profiles of the
local basis functions. Then

RT(, @E?IR{T @ @ span{ET } @ @Span{ET }

Teg, TeIyMeZ;,NaT Me %), 0T>M
2.1.2. Two types of basis functions in RT}g and RT}*

For M € %}, denote by yy, the basis function of V}l such that W, (M) = 1 and v, vanishes on other
vertices. We can rewrite (2.5) to the lemma below.

Lemmal ForM,M' € %2, andT,T' € 9, suchthat M € 0T and M’ € dT’, with

. 1, M=M . I, T=T
Sy denotmg{ 0, M#M and Srp denotmg{ 0, TAT

it holds that
(ERLY Ve )pr + (diVERDY Wi )1 = Symr Sy

Denote, for M € 2,

By = {gﬁ c P span{E%b}’l} 2 Y (@ V) + (dives, wa)r :o}, (2.6)
aT>M Teg),
and
Gm = @ span{E?Q%”}. 2.7
JdT>M

Then %y C Gu. We present the structures of RT}§ and RT}° in the lemma below.

LemmaZ 1. IfM#N e Z), 6unéy={0};

hO_ @ Bu;

MeZ,

3. RT¥=| P bulo| P 2u
Mezp MeZj
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Proof The first item follows directly by definition. For the second, by (2.3) and Lemma 1,

RT) =< Th € @ @ span {ET } : Z (T, V)1 + (divey, wy)r =0, VN € 25,
MeZy, 0T>M T,
- P {1711 € @ span {E%lzly} c Y (@ V)7 + (dive, win)r 20}7
MeZ), dT>M T€9,,0T>M

and the second item follows. For the third,

RTYE ={ g e @ D span{E;’gg”f}: Y (0 VY1 + (dives, yw)r = 0, YN € Zig
MeZ, 0T>M Teg,

=iume G D SPan{E?Q¥}1 Y (@ Vyw)r + (diveg, yw)r =0, VN € Zig
Me2; 9T>M TeZ,

Diue B @ soan{Efs)}

Meg?fhh dT>M

=| P { c P span{ET }: Z (Iﬁ,VWM)T+(diVIjL>WM)T:0}

MeZ;i oT>M Te),
ED @ @ span {ET }
Me fb dT>M
The third item follows. This completes the proof. [J

2.1.3. Profiles of %), and 6y
Lemma 3 Given a vertex M that is shared by m triangles, dim(%y) = m — 1. A minimal support for
a function in By is a combination of two cells.

Proof The support of yy, consists of m triangles. Denote by T;, 1 < i < m, the m triangles that share
m

M. The basis functions in %), then take the form Z y,-g% , satisfying

i=1

[(vb, Y (wm|z))1, + (wdivhy  win|r)7 ] = 0. (2.8)

™=

1

i

By (2.5), this equation admits (m — 1) linearly independent solutions, and every corresponding function
can be supported on two cells. Particularly, we assign the two cells to be adjacent. Figure 2 illustrates
the profile of a basis function.
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FIG. 2. Profile of a global basis functions in %y, supported on two adjacent cells.

The function as illustrated in Figure 2, denoted by 7, is
T=Dbp onTy, T=—by, onTg, and T=0, elsewhere.

By (2.5), on T, (T,Vyum)7, + (dive,yim)r, = 1. (2,Vye)r + (dive, v )y, =0, and (7, Vyw)z, +
(dive,yw)r, = 0; on T, (T,V¥m)r + (dive, ), = —1, (T, VYR)1; + (dive, yr)7, = 0, and
(t,Vyn)1, + (dive, W)z, = 0. Then 7 satisfies (2.8). As T vanishes on other cells, we can obtain
Z (7,Vy)7 + (dive, y)r = 0 for all y € V}, thus 7 € RT}g.

Te,

According to the profile of Figure 2, a set of linearly independent basis functions of %), can be
given in Figure 3, where M is an interior vertex, and in Figure 4, where M is a boundary vertex. This
completes the proof. [

Lemma 4 Given a vertex A that is shared by m triangles, dim(%) = m. A minimal support for a
Sfunction in €4 is one cell.

The proof of Lemma 4 is straightforward. We refer to Figure 5 for an illustration.

Remark 5 For RT)j, the total amount of the locally supported basis functions is

Y, #{T € 7,:9T > M} — 1] =3#[T € J}] —#[M € 2}] = dim(RT});).
MeZ,

For RT}, the total amount of the locally supported basis functions is
Y #{TeZ:0T>M}|+ Y W{TeT:dT>5M}—1]
Mez} MeZj

=3#[T € F] —#[M € 2] = dim(RT}°).
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FIG. 3. Profiles of linearly independent basis functions of By, M € %h‘

In any case, T is covered by the supports of no more than m + 6 basis functions, where m is the
number of cells that has at least one vertex in common with T. The generation of a local stiffness
matrix is a local operation, and the assembling of global stiffness matrices can be done by following
the standard routine for finite elements of Ciarlet-type.

Based on the specific profiles of the basis functions, we conclude this subsection by rephrasing
Lemma 2 as the theorem below.

Theorem 6 The space RT} admits a set of linear independent basis functions, which are belonging
10 @yre 2, Bum and each supported on two adjacent triangles.

The space RT)° admits a set of linear independent basis functions; they consist of two types of
functions, Type I and Type Il. The functions of Type I are belonging to D, 2 By and each supported
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P \
e \
e A
>

T, - //\\‘

FIG. 5. The local basis functions associated with a boundary vertex M can work as global basis functions of RT}°.

on two adjacent triangles, and the functions of Type Il are belonging to @ Mez 6y and each supported
on one triangle.

2.2. Approximation and stability

2.2.1. Locally-defined projective interpolator for H(div)
Given a triangle T, define the cell-wise interpolator

5" H(div,T) — RT(T) (2.9)
such that
(¥, Vv) 7 + (divIRTz.v)7 = (7, Vv)7 + (dive,v) 7, Vv e P (T). (2.10)

3
By 2.5), I7' =Y [(z,VA)r + (divz, A)r] b, and I} ¢ = ¢ for 6 € RT(T).
i=1

Remark 7 The Crouzeix-Raviart element interpolator 1SR : H(T) — Py(T), defined such that
LISRv = [ v, satisfies the condition (IRv,divt)r + (VIS?v, T)r = (v,divT)r + (Y, T)7, VT € RT(T).

On the triangulation .7}, define the global interpolator by

I @D EPH(div,T) - RT(Z), (IR 2)r =I5 (tilr), VT € . 2.11)
TeT),

Lemma8 Z(IN", H(div,Q)) C RT! and Z(IXT, Hy(div,Q)) C RTH.
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Proof Given ¢ € H(div,Q), (g,Vv;) + (dive,v;) = 0 for any v, € V). Thus for any v 6 V}lo,
Y, (VoI5 0)r + (v, divIgTo)r = Y (Vvi, @)1 + (vi,dive)r = 0. Namely IR € RT}*, and
TeI, Teg,

thus 2 (IR, H(div,Q)) € RT}®. Similarly Z(I}", Ho(div,Q)) C RTS. This completes the proof. [

Remark 9 Different from most existing interpolators, ]IRTG is not defined in the form of Y.1;(0)1;,
where T; is each a global basis function of RT}, and l; is each a functional on ¢. Indeed, according
to theory of [42], as the global basis functions of RT} may not be locally linearly independent,
interpolator defined as ¥ 1;(c)T; with I; depends on the local information of ¢ cannot be projective.

2.2.2. Approximation and stability
Lemma 10 With a constant C depending on the shape regularity of T,

1. stabilities:

||]IRT

||d1V]IRTG||()T HleG”() T, and GHdwT CHG”le T,

2. optimal approximation:

|div(e 17" 0)|lor = _inf [ldiv(c—1)or, and [&—T7 Gllawr <C inf IIG | div,7-
TeRT(T) TeRT(T

Proof Evidently, diVHl;Tg is the L?(T) projection of divo onto piecewise constant space; therefore,
[divI¥To|lor < ||divelloq. Now we use PY for the L*(T) projection to constant, and P} :=
(PY)2. Then for any T € RT(T), we have by Poincaré inequality, ||z —P%z|jo.r < Chr||Vz|or =
Chr /V/2||divz|jo.r. Meanwhile, for any v € P(T), ||[v —P%v|or < Chr||Vv||or. For any v € Py (T),
(I8, Vv) ;. + (divIfT 6, v)7 = (¢, Vv)r + (divg,v) 7, and (divI§T ¢, P)v)7 = (divg, PYv)r. Therefore,
(PYIXT G, V), = (0. V(v — Pv))r + (diva,v — Phv)r. Tt follows that P31 lor < C(l|allor +
hr||divg lo,r). Further [IF ¢ llor < C(||cllo,r +hr[|dive|lo,r), and I & ldiv,r < ClIC]ldiv, -
The optimal approximation follows then from the stability and by the standard procedure. [J

Moreover, as the global interpolator is defined completely piecewise, global stabilities hold and

o —Tgllgv. <C inf |o—1lla 2.12
||~ h ~||dlvh\ y,eRT(ﬂ,,)HN Jz”dlvhv ( )

where C depends on the regularity of the triangulation only.
Further, the Poincaré inequalities hold for RT}° and RT7.

Lemma 11 Given 1, € RT}S, there is o) € RT}S, such that div,o), = divyT;, and ||oplloa <
Clldivazallo.o-

Proof Note that divy,T), is piecewise constant, and there exists a T € H(div,Q), such that divt =
divy 7y, and [|7/laiv.o < Clldivz[loq. Set o = I}z, then div,0) = divt, and || aiv, < CllTlaw <
C||divaTh|lo.o- This completes the proof.  [J
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Remark 12 Evidently, RT}* D ZZT, and thus the approximation and stability properties of RT}°
follow. Though, we present direct proofs of them by the aid of the interpolator. In some sense, both the

two properties established here are optimal.

2.3. Discretization of the variational problems

2.3.1. Discretization of the H(div) elliptic problem
We consider the problem: given f € L*(Q), find ¢ € H(div,Q), such that

(dive,dive) +(0,7) = (f,2), V7€ H(div,Q).

It follows that dive € Hy (Q), and f = —Vdivg + o.
We here consider the discretization of (2.13): to find g;, € RT}¢, such that

(divion, divaTs) + (Gn: Th) = (f,Zn), VTn € RT}S.
Immediately (2.13) and (2.14) are well-posed. Denote ||, |div, := (||:L},||% + ||dthIjl||(2))1/2.

Theorem 13 Let ¢ and G}, be the solutions of (2.13) and (2.14), respectively. Then

o —0nlldiv, <2 inf |o—1pllgiv, + inf |dive—v .
o = onllaiv, < %MzJL T llaiv, . }10” o —vnllie

Proof By Strang’s lemma (cf. [15]),

(divo,div,ty,) + (Vdivo, 1)

0 —Oplldgiv, <2 inf ||6—7Th|ldiv, + sup
H ” v, X IhGRTZCH ,JLH vy, IhGRTZC ”Ih”divh

For any v, € V,llo,

2.13)

(2.14)

(2.15)

(dive,div,T,) + (Vdive, ) = (dive — vy, div,,7,) + (V(dive —vi), 74) < [|dive —vill1,all Tl div, -

Then (2.15) follows. [

By the abstract estimation, the precise convergence order can be figured out with respect to the

assumption on the regularity of the solution.

2.3.2. Discretization of the Darcy problem
We consider the problem: given f € L?(Q), find (1, 5) € L*(Q) x H(div,Q), such that

(¢.1)  +(udivt) =0 V1 € H(div,Q),
{ (dive,v) =(f,v) VvelL*(Q).

The discretization is to find (4, 04) € Po(F) x RT}C, such that

{ (G, Th) +(up,divyTy) =0 V1, € RTM,
(divyGn,vh) =(fvn) Vi€ Po(Tn).

Here &,(9},) is the space of piecewise constant functions. Evidently, (2.17) is well-posed.

(2.16)

2.17)
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Theorem 14 Let (u,0) and (uy, o)) be the solutions of (2.16) and (2.17), respectively. Then

u—u, +l||lo—opllaw, <C inf u—v +l|lo—7hllgw, ) + Inf ||u—s
lu—unlloo+ o — Snllaiv, < Vhe%(%)(ﬂ rllo.e + 116 — Tlldiv,) SheV}mH g
TRERTC

Proof By the Strang lemma for saddle point problem (cf., e.g., [9, Proposition5.5.6]),

(gh?ﬁ) + (Lt, divhfﬁ)
|

lu—uploo+llc—0nllav, <C| inf (Jlu—vslloo+Ilo—Tallav,)+ sup :
|Znldiv,

V€20 (Ty) T4 €RT)E
T, ERT}C

Note that ¢ = Vu, and we have, for any s, € V.

(0, 2n) + (u,divyTy) = (Vi = Vi, Th) + (u = 55, divTh) < [l —sull1.@ll Tl aiv, -

It follows then

u—u, +llo—opllagy, <C inf Uu—v +lo—7ullaiv, ) + Inf |lu—s
u—unlloo+ o —cnllaiv, < Vhe%%)(H nllo. + 116 — Talldiv, ) She%” nll1.e
T, €RT)C

This completes the proof. [

2.4. Numerical experiments

We show the implementability of RT} and its difference from the classical Raviart-Thomas element
by two series of experiments.

2.4.1. Implementability of the space RT}¢
Firstly, we use RT}° to solve numerically the boundary value problems (2.13) and (2.16). We use the
unit square (0, 1)? as the computation domain, and we choose properly the source terms, such that

o for (2.13), the exact solution is
6 = (—2cos(mx)sin(7y),sin(7x) cos(my)) ;
o for (2.16), the exact solution is
u = sin(mx)sin(xwy), and ¢ = Vu.

We construct two series of triangulations, being crisscross (cf. Figure 6, left) and irregular (cf. Figure
6, right), respectively. The computational results are recorded in Figures 7 and 8.
On the two series of triangulations, we also use RT} x Z%(.7,) to solve the eigenvalue problem of
(2.16), which is to find (A,u,0) € R x L2(Q) x H(div,Q), such that
(g.1)  +(udivy) =0 V7 € H(div,Q), (2.18)
(diva,v) =21 7* (u,v) VveL*(Q). '
Note that on unit square, the eigenvalues of (2.18) take the values m> +n?, m,n € N*. Here we separate
the effect of 2 so that the results are easy to read. The respective eigenvalue problems of (2.13) and
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’ T‘riangula(io‘n ’ T‘riangula(io‘n
0.9 1 0.9
0.8 1 0.8
0.7 1 0.7
0.6 [ o 0.6 [
> 05 > 05
0.4r b 041
03[ q 03[
0.2 1 0.2
0.1 1 0.1
0 0
0 0.2 0.4 0.6 0.8 i 0 0.2 0.4 0.6 0.8 1
X X

FIG. 6. The initial triangulation of two series of triangulations. Left: crisscross; right: irregular.

log, (error)
log, (error)

1 15 2 25 3 35 4 4.5 5 71 1.5 2 25 3 35 4 4.5 5

log, (1/h) log, (1/h)

F1G. 7. Convergence process for (2.13). Left: on crisscross triangulations; right: on irregular triangulations.

(2.16) are essentially equivalent to each other. The 10 smallest computed eigenvalues of (2.18) on each
series of grids are recorded in Tables 1 and 2. In the tables, we use “L” to denote the level of each grid,
and use \/ " to denote the decreasing/increasing trend of the computed eigenvalues as the grids are
refined and refined. The computed eigenvalues converge to the exact eigenvalues nicely. Moreover, it
can be seen that the RT} scheme for (2.18) provides upper bounds to the exact eigenvalues.

P I I I I I I I

2.619 | 9.727 | 9.727 9.727 19.123 29.181 29.181 29.181 29.181 29.181
2.128 | 5.982 | 5.982 10.477 14.547 14.547 | 20.650 | 20.650 | 32.039 | 38.907
2.031 5.223 5.223 8.511 11.009 11.009 14.480 14.480 | 20.137 20.137
2.008 | 5.055 5.055 8.122 10.242 10.242 13.345 13.345 17.739 17.739
2.002 | 5.014 | 5.014 8.030 10.060 | 10.060 | 13.085 13.085 17.182 | 17.182

N “\ N\ N\ N\ N N\ N ¢ N\
TABLE I Computed eigenvalues by RT}° scheme on crisscross grids.

(U2} BN KUV [N O Sy o)
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log, (error)

—— |6 — | 2
w05 = Gl
-o--|lu— upr,

1 1.5 2 25 35 4 45 5 1 1.5 2 25 3 35 4 45 5
logz (1/h) logz (1/h)
F1G. 8. Convergence process for (2.16). Left: on crisscross triangulations; right: on irregular triangulations.

L] & | &2 | & Al 27 A8 A A A7 A0
1| 2474 | 6921 | 7575 | 12150 | 17.167 | 20.663 | 21.687 | 23.653 | 25.825 | 26.359
2 [ 2123 | 5.636 | 5770 | 9.850 | 12.660 | 13.141 | 18222 | 18.582 | 24.122 | 25578
3 | 2031 | 5064 | 5199 | 8474 | 10712 | 10778 | 14307 | 14357 | 18.985 | 19.218
4 | 2008 | 5041 | 5050 | 8119 | 10.182 | 10.195 | 13325 | 13336 | 17520 | 17.565
5 | 2.002 | 5010 | 5.013 | 8030 | 10046 | 10.049 | 13.081 | 13.084 | 17.132 | 17.142
N N N N N N N N N N
TABLE 2 Computed eigenvalues by RT}° scheme on irregular grids.

2.4.2. Comparison with the classical Raviart-Thomas element

09

08

07

06

04

03

02

01

FIG. 9. The initial triangulations. Left: regular; middle: fish bone; right: union Jack.

We here show the experiments of solving the eigenvalue problem (2.18) with the classical Raviart-
Thomas element scheme on the crisscross triangulation, the regular triangulation (cf. Figure 9, left),
the fish-bone triangulation (cf. Figure 9, middle), and the union Jack triangulation (cf. Figure 9, right).
The 10 smallest computed eigenvalues on each series of grids are recorded in Tables 3, 4, 5 and 6. It
can be seen that the classical (lowest-degree) Raviart-Thomas element might provide upper or lower
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bound to different eigenvalues, sensitive to the grid as well.> Numerical experiments on these special
triangulations which are easy to check are included.

P I I I I I A i
1.858 | 4.158 | 4.158 8.254 | 9.727 12.042 12.042 12.733 14.590 14.590
1.965 | 4.893 | 4.893 | 7.431 9.850 9.850 11.731 11.731 14.847 15.317
1.991 4975 | 4975 | 7.862 | 9.986 9.986 12.712 12.712 17.071 17.071
1.998 | 4.994 | 4.994 | 7.966 | 9.998 9.998 12.929 12.929 17.024 17.024
1.999 | 4998 | 4998 | 7.991 9.999 9.999 12.982 12.982 17.006 17.006

/! /! /! 4 a /! /! /! N\ N\

TABLE 3 Computed eigenvalues by the classical Raviart-Thomas
element scheme on crisscross grids.

wls|lw|l|—=|

P I I I
2.110 | 3.542 | 4.863 | 9.727 | 9.727 12.021 13.453 14.590 — —
2.032 | 4.834 | 5.096 | 8.077 | 8.957 9.414 11.107 11.377 12.242 14.729
2.008 | 4.964 | 5.026 | 8.119 | 9.798 9.815 12.896 13.422 16.153 16.196
2.002 | 4991 | 5.007 | 8.033 | 9.951 9.952 12.983 13.113 16.791 16.799
2.001 | 4.998 | 5.002 | 8.009 | 9.988 9.988 12.996 13.029 16.947 16.950
N\ Y N\ N\ / a / N\ /! /!

TABLE 4 Computed eigenvalues by the classical Raviart-Thomas
element scheme on regular grids.

wls|lw|lo|—|

N % (4 & [ & [ n [ 4 [ &4 [ & [
2.084 | 4.127 | 4.127 | 9.727 | 9.727 | 12.895 | 12.895 | 14.590 — —
2.032 | 4943 | 4.959 | 8.337 | 8.881 8.989 11.359 | 11.501 | 12.716 | 13.188

2.008 | 4.993 | 4995 | 8.126 | 9.788 | 9.800 13.153 | 13.166 | 16.107 | 16.159
2.002 | 4.999 | 4999 | 8.034 | 9.950 | 9.951 13.047 | 13.048 | 16.790 | 16.794
2.001 | 5.000 [ 5.000 | 8.009 | 9.988 | 9.988 13.012 | 13.012 | 16.948 | 16.948

N / A Y e / N N / e
TABLE 5 Computed eigenvalues by the classical Raviart-Thomas
element scheme on fish-bone grids.

wnlbh|w|o| =

The RT;° scheme for (2.18) is further carried out on the regular triangulation, fish-bone
triangulation and the union Jack triangulation, and the 10 smallest computed eigenvalues on each series
of grids are recorded in Tables 7, 8 and 9. It can be seen that, in all these experiments, again, the R’]I‘Ec
scheme for (2.18) provides upper bounds for all the eigenvalues. The robustness is improved with RT}¢.
This will be further investigated in future.

2 'We do not think it is now found for the first time that the classical (lowest-degree) Raviart-Thomas element scheme cannot be
expected to provide a certain bounds to the exact eigenvalues, though we do not find a referred literature.
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R I I I I A i
2.432 | 4127 | 4.127 | 7.295 | 9.727 12.895 12.895 14.590 — —
2.030 | 4.925 | 4.925 8.315 | 9.727 9.727 11.501 11.501 13.497 13.497
2.008 | 4.993 | 4.993 8.120 | 9.786 9.786 13.133 13.133 16.097 16.097
2.002 | 4.999 | 4.999 8.033 | 9.950 9.950 13.047 13.047 16.789 16.789
2.001 | 5.000 | 5.000 | 8.009 | 9.988 9.988 13.012 | 13.012 | 16.948 | 16.948

N\ / / N a /! N N /! a

TABLE 6 Computed eigenvalues by the classical Raviart-Thomas
element scheme on union Jack grids.

(V20 I N VY ) e ol

M a i A A A i M G
3.648 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 — —
2396 | 6.748 8.210 13.339 | 19.454 | 21.970 | 23.399 | 33.381 | 36.189 | 58.361
2.095 | 5414 5.692 9.432 12.082 | 12.343 | 15.678 | 18.242 | 23.299 | 23.656
2.024 | 5.102 5.166 8.372 10.494 | 10.510 | 13.684 | 14.246 | 18.387 | 18.430
2.006 | 5.026 5.041 8.094 10.122 | 10.123 | 13.173 | 13.306 | 17.335 | 17.344

N N N N N p N Y h N
TABLE 7 Computed eigenvalues by RT}° scheme on regular grids.

wnls|lw|lo|—|

W% [ & | & [ & | &% [ & [ & [ & | &
3.648 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 | 14.590 — —
2.395 7.247 7.455 14.590 17.639 | 20.437 | 26.875 32.313 36.332 | 58.361
2.095 5.537 5.552 9.559 11.969 12.131 16.941 17.131 22.453 | 23.322
2.024 5.133 5.134 8.380 10.485 10.497 13.960 13.973 18.334 18.398
2.006 5.033 5.033 8.094 10.121 10.122 13.239 13.240 17.334 17.339

N\ N\ N\ N\ N\ N\ N\ N\ N\ N\

TABLE 8 Computed eigenvalues by RT}° scheme on fish-bone grids.

wnls|lw|lo|—|

TP I I N I I I I I
2918 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2.366 7.274 7.274 11.672 19.454 19.454 | 29.531 29.531 43.615 58.361
2.087 5.505 5.505 9.466 11.963 11.963 16.852 | 16.852 | 22.973 | 22.973
2.022 5.121 5.121 8.349 10.447 10.447 13.893 13.893 18.258 18.258
2.005 5.030 5.030 8.086 10.109 10.109 13.218 13.218 17.301 17.301

N\ N\ N\ N\ N\ N\ N\ N\ N\ N\

TABLE 9 Computed eigenvalues by RT},° scheme on union Jack grids.

wls|lw|lo|—|

3. Nonconforming finite element exterior calculus

3.1. Nonconforming finite element spaces for HA* in R"
Let ¢, be a simplicial subdivision of Q. For 0 < k < n— 1, we define finite element spaces for HAK by

WZCAk = {a)h S @;Ak(%h) : <wha5k+1nh>L2Ak — <d’;la)h,nh>LzAk+1 = O, VT]h S WZOAH_I}, (3.1)
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and, for HoAk,
E(C)Ak = {0);, S 33 AF (%) : <a)h,5k+1nh>L2Ak — <dha)h,nh>L2Ak+1 =0,V € WhAkH}. (3.2)

Set
WA = PoN (4,), and WiGA" := WiA" DL%A”(Q). (3.3)

Remark 15 Note that WZCA0 and W%A0 are the lowest-degree Crouzeix-Raviart element spaces. If
further n =1, WECA0 and W%A0 coincide with the respective continuous linear element spaces.

Remark 16 Associated with the definitions, by (1.3), it holds that, for example,
WZAk = {[Jh S @T’il\k(gh) SOkt Tn) 2 a1 — (uh,d’;’l Th)paak =0, V1 € VV%AI(*1 } .

By the same virtue of Theorem 6, noting (1.3), we can prove theorem below.
Theorem 17 The space W%Ak admits a set of linear independent basis functions, which are each
supported on two adjacent simplices.

The space WECA" admits a set of linear independent basis functions, they consist of two types of
functions, Type I and Type I1. The functions of Type I are each supported on two adjacent simplices, and
the functions of Type Il are each supported on one simplex.

In the sequel, we use .Z? for a family of shape regular subdivisions of Q.

3.1.1. Locally defined interpolator and optimal approximation
Similar to (2.9), we define a local interpolator H‘}k cHAXN(T) — e@fAk(T), 0 <k <n—1, such that,

k k
(Ig @, 8k+1M) 27k (1) — (@'1g O, M) 2 pk1 (1) = (@, 8k 1M) 2k (1) — <dkw7n>L2A’<+1(T)7
for any n € 22" A¥*1(T), and, following (2.11), define a global interpolator

k k k
IV . P EPHANT) — 27 AN(9,), by (I} 0)|r =1F (0|7), VT € %,
=

Set I¢" the L?(T') projection to 90/\” on T, and I the L?(Q) projection to ZyA"(%,).
Denote || ty]| o = (||df o Ak)l/ 2. The proofs of the two lemmas below are the same
as that of Lemma 8 and Lemma 10, and are omitted here.

Lemma 18 Z(I% HA¥) C WA and (19" | HyAF) € WIS AK,

Lemma 19  With Cy, uniform for 77, for 4, € % and o € @ ESSHAN(T),
TeY,

k
o-1%0| . <C inf ® — M| 1.
[ b Ollge < LV [l —1alg¢
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3.1.2. Uniform discrete Poincaré inequalities

As generally 2(d5, WiCA¥) ¢ HAF1(Q), we cannot simply repeat the proof of Lemma 11. We adopt

an indirect approach, which can be viewed a finite-dimensional analogue of the closed range theorem.
Let X and Y be two Hilbert spaces. For (T,D) : X — Y a closed operator, denote

DT:={veD:(v,w)x =0, Ywe 4 (T,D)}.

Define the Poincaré inequality’s criterion of (T,D) as

Ivlix .
. sup , if DT £ {0};
Pc(T D)= { o b [Ty 0} 64
0, ifDT={0}.

If pic(T,D) is finite, then the Poincaré inequality holds for (T,D). It is further indeed the best
constant of the Poincaré inequality. The index can be used for a criterion for closed range. We refer to,
e.g., [4, Lemma 3.6] for a proof of Lemma 20 up to little technical modification.

Lemma 20 For (T,D): X — Y a closed operator, Z(T,D) is closed if and only if pic(T,D) < +-oo.

The main estimation is the theorem below.

Theorem 21  With a constant Cy,, uniform for FY,
pic(d}, WICAY) < .

We firstly present three lemmas below, and postpone their technical proofs to appendix Section A.

Lemma 22  pic(d}, WI°A¥) < pic(8x41, WipAS™) + 2pic(df, 27 AK(9),)).

Lemma 23 pic(d}, 2, AX(¢,)) = O(h).

Lemma 24 | pic(8xy1, WiA*™!) — pic(df, Wi€A¥)| = O (h).

Proof of Theorem 21 It is well known that (c.f., e.g., [6]), there exists a constant Ci, such that
pic(d*, W,A¥) < Cp ., and, pic(d*, WyoA*) < ., which implies immediately that pic(8x41, Wi, A* 1)
and pic(8y.+1, WiA**1) are uniformly bounded. It follows then pic(df, WiAK) < Cy . O

Similarly, pic(d,, WICAY) < C .

3.2. Discrete Helmholtz-Hodge decompositions of PyA*(4),)
Theorem 25 (Discrete Helmholtz decomposition) ~ Orthogonal in L>AX(Q), for 1 <k <n,

PoN (D) = Z(d} WA @ A (81, WioAR) = Z2(d; 1 Wi AR @t v (85, Wi AR);
forO<k<n—1,

PN (G) = N (dj, Wi N) &5 B (81, Wiph 1) = A (), WIEAY) @ R(81ci1, WA,
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Proof We are going to show, for 1 <k <n,
PoN () = Z(d} " WISAFY) @ (85, WipA¥),
and other assertions follow the same way.

By construction, ZyA¥(%,) contains Z2(ds ", WICAK1) @ 47 (8, Wi, A¥). Conversely, let o, €
PoN(G,) o+ Z(dE~ WICAKT). Then for any py, € WICAK!,

Z <G]17dk71,uh>L2Ak(T) + <6k6hhu'h>L2Ak_1(T) == <Gh,dl;liluh>L2Ak - 0
TE%h

Namely o, € Wj A and further o), € A (8¢, W}, A¥). This completes the proof. [J
By noting that, for | <k <n—1,
Por(G) = B (Al WA @b (81, WigAR) = 4 (dS, WIEAR) 1 (8141, WipAF T,
we have immediately that, for | <k <n—1,
R WA € 7 (df, WIEAY) <= Z(Sii1, WipATh) € A (81, WioAR).  (3.5)
Further, we can construct the discrete Poincaré-Lefschetz duality identities below.
Theorem 26 (Discrete Poincaré-Lefschetz duality) For1 <k<n-—1,
N (A, WIAR) o (A WISARTY) = 1 (85, WigAF) &1 (811, Wip A

and

N (d, WA & 2(dy~ WIGA) = A (85, WiAY) &5 2 (81, WA,

Denote $)°AF := (a5, WIAK) o1 2(d ' WICA*~1) and HJA* == 4/ (df, WISAK) ot
74 (dﬁ*1 , Wi AK=1) We have the discrete orthogonal decomposition of ZyA* (%) below.

Theorem 27 (Discrete Hodge decomposition) For1 <k<n—1,
PoN (@) = (WA &7 90N (= DA & R (i1, WipA )
=Z(d; L WISATD) @ 91 AR (= 978 & 2 (8111, WA, (3.6)

Remark 28 Existing discrete Hodge decompositions in literature are of discretized spaces of HA¥;
see [4, (5.6)] for example. Contrastly, Theorem 27 is of a discretization of L* AX.

3.3. Commutative diagrams

Lemma 29 Forany i € HAk(T), 0<kg<n—1, H‘%Hldku = dkﬂ‘}ku.
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Proof Since d**'d*u =0, d*" 19" d*u = 0. Further, 19" d*u € Z,AF*!. Then,

k+1 k+1
(1% dk:u75k+2n>L2Ak+1(T)_<dk+l]1(]i" dkﬂvn>L2Ak+2(T)

= (A, 8kam) o prer oy — (A A M) o gy = (A, B2 2t (1) — (1 Sk S k()

k & .
= (AT 1, S1am) 2wty — (0§ 1 8k41 8k2M) 2k (), V1 € 27 AT,

Here we use underline to label the vanishing terms. Therefore, I¢ " dfy = a1y, O

Immediately we have, for any u € HA*(Q), Hgkﬂdk,u = d’,;I[gk/.i, 0<k<n-—1
We summarize all above to theorem below.

Theorem 30 The following de Rham complexes commute:

ir 0 1 n—1
R LAN HAY LI HA! 4, LN HA"
0 1 n
LI LI s 6
inc nc A 0 d2 nc A 1 dfll dzil nc AN
R — WA — WiA — — WA
0 1 n—1
0 —  HyA° 9 HyA! LN d HoA"
0 1 n
Jad jd e (3.8)
0 wie AO d2 Wwhe Al d/ll dzil WO AR
’ hO - 1O - ’ hO

Remark 31 Given Theorem 26 the discrete Poincaré-Lefschetz duality, we are actually led to that,
once one of the four complexes in (3.7) and (3.8) is exact, so are the three others.

3.4. Finite element schemes for elliptic variational problems

Consider the elliptic variational problem: given f € L*>A*, find @ € HA¥, such that
(d*@,d* w) 2 g1 + (@, 1) 200 = (B, 1) 200, V1€ L2AK, (3.9)

It follows that d*w € HjA*!, and 8,1 d* o+ 0 =T1.
‘We consider its finite element discretization: find @ € WZCA" , such that

(A @n, A5 ) 2 pk1 + (O ) g2 = (6 1) 20k, € WIEAK. (3.10)
Immediately (3.9) and (3.10) are well-posed.

Theorem 32 Let @ and wy, be the solutions of (3.9) and (3.10), respectively.

o— oyl <2 inf |o— + inf ||dfeo—71 .
| lla < uheW'h'CH Hallge zhew;;OAkﬂH AL

The proof is the same as that of Theorem 13, and is omitted here.
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4. Discretization of the Hodge Laplace problem with nonconforming spaces for HA*

In this section, we study the discretizations of the Hodge Laplace problem: given f € L?A¥, with P’j.3 the
L? projection to AL, find @ € HAK(Q) NHI A (Q) with d*@ € H A (Q), such that

o LHANQ), and i d'w+d" 50 =Pyt 4.1)
The primal weak formulation is: find @ € HA*N H(’)‘Ak, such that

(@,6) a0 =0, Vg e HAK, 42
(df@,d* 1) o gt + (810, Sk lt) o pp1 = <f—ng,H>L2Ak, Y € HAYQ)NHIAX(Q). ’
A standard mixed formulation based on @ € HA¥ is generally used ([4]), which seeks (@P,oP, OP) €
HA* x HAF! x $9AX, such that, for (1,7,6) € HAF x HAK1 x §AX,

(0P, ¢) 2pk =0
(0P, T) 2 pk11 —(oP,d ) =0 . (4.3)
(0P ) ope A0 ) e H(d 0P d ) g = (1) o

In this section, we investigate the application of the nonconforming finite element spaces to the
discretizations of this classical formulation and to a new “completely” mixed formulation.

Remark 33  Here we call (4.3) “primal” mixed formulation, and use the supscript P to label that.
Actually, it is natural to set an auxiliary mixed formulation, which seeks (04,4, 99) € H{{Ak X
H A < 9EAX, such that, for (1,1, ) € HyAF x HFAFT x H5A%,

<(Dd,C_,'>L2Ak =0
<Cdarl>L2Ak+1 _<wd75k+1n>L2Ak =0 . 4.4)
<"9d7I~L>L2Ak +<6k+lcdnu>L2Ak +<5kwda Silt)papi-t = (£ 1) 2

This can be viewed as a mixed formulation as the dual of (4.3).

Conforming finite elements have been used for discretization of (4.3); they are naturally used
for (4.4). For example, we can consider the discretization for (4.4): to find (a);li, C}?, 19;?) € WZOAk X
Wi AL 550 AR, such that, for (L, Mk, Gn) € WigAK x Wi AR x 37 A,

<0‘)da G>L2A/" =0
<Pz+1C;?>Pz+lnh>L2Ak+' _<w}?7 SrriMn)ape =0 . 4.5
(Of ) ope F(8k1 G8 ) 2k +(8rf, Spn) oar1 = (PR L) 2 0k

The well-posedness of (4.5) is the same as that of (4.8)_bel£)w. The convergence analysis of (4.5)
can be done in a classical way; precisely, denote by (@2, (3, 98) € Wi A* x Wi AL x g2 AR and
((I);li7 C,?, 13,?) € WZOA" X W;;OA"+1 x 8370 AF the respective solutions of the auxiliary problems

. <(Dd,g>L2Ak 0
i (G, ) 2 pk —(@f, Sk 1Mn)2pk - =0 ;40
(O ) poae (k1 G ) pane +(Ok @, Setn) i1 = (PR, hn) 12



24 SHUO ZHANG

and
5 <(I)d?G>L2Ak =0
~ <C}?7n~h>L2Ak+1 _<5);?7 Okr1Mn)p2ac - =0 . 4.7
<19;?7H11>L2Ak +<6k+1c;,ivﬂh>L2Ak +<5k@ga5kﬂh>L2Ak71 = (£, n) 20k

It follows by standard procedure that

d #d qd ~d 7d Jd k
(o5, G O) = (@35 G5 O g e it 2k < ChIPE]| 2 pk < Ch|f]] 2k,
and
~d 7d Jd ~d 7d 3d
(@, Ch s Oy )— (a)h ) Ch s Oy, ) ||H*Aka*Ak+1 KI2AK S Ch”f”LzAk'
Meanwhile, the classical analysis (cf. [6, Theorem 7.10 and its proof]) holds as
d ~d qd ~d *d _Jd s
(@0, 8%, 0%) = (@, G s ) e ab e ak vt r2ak < CH Bl 2k

if the domain Q is s-regular. The convergence analysis of (4.5) then follows.

4.1. Nonconforming discretization of (4.3)

By the newly designed nonconforming finite element spaces, the discrete problem is: to find
(wf,0f, 0F) € WICAK x WICAK=1 5 657 AK such that, for (i, Ty, Gy) € WICAK x WICAK—T 5 R Ak,

k—1 k—1 <a)}ll)’l’f’-],l>ll‘21\k =0
(P~ i}j,lp,; Th) [2Ak+1 —(ka)},’,dh; Th)peak =0 ) . (4.8)
<19}5)a.uh>L2Ak +<dh7 G;Il)>lih>L2Ak +<dhw;l:adhﬂh>]_2,\kfl = <f7Ph.Uh>L2Ak

To verify the well-posedness of (4.8), following [4, Section 4.2.2], writing X, := WZCA" X
WA REAS, with || (s o ) 1, = [latal g + 1%l g1+ [1Gll 2o denoting on Xj, x X;,

By ((@n, 00, ), (Ui T 1)) == (P} o Py ) o vt — (@F A1 00) 2 0
— (O k) p2pk — () O ta) 2k — (AR08 dibts) 2001 — (@F, Gi) 2prs  (4.9)
we show the uniform inf-sup condition that

B )
0 (@, 0,0, )€X)y 0% (Up T Sn) EXp H (wh7 Oh, ﬂh) HX;, || (.uhv Th, Qh) ||Xh

Given (@y,0p,9;,) € X, we can decompose orthogonally @), = d/;l_l Pn+ a)}f’ + oy, with p, €
W}}CA"*I, oo,{j € SjECAk, and @j; orthogonal to .4 (dﬁ,chAk), such that, by the discrete Poincaré
inequality (Theorem 21), th”d’,;*‘ < cpllds pp |2 k-
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Now, set T, = o), — éph, =~y —dy "o, — Oy, and g, = — B, + 7, then

H(“hu Ths gh)HXh < CH (a)hv Oh, 79}1)”)(;.7

and
Bi((@h, Ons O, (1 Ty G1)) = [P~ Oull o a1 + 11" Ol Z2 00 + 050001 21
+ Hﬁh”iz/\k + Hw{) ||22Ak + Cl%“dl;l_lph”LZAk - cl%)<0hvph>L2Ak1-
Note further that
(On: P 2 ak1 < N Gnll 2pe-1 0l 2ak1
< %PHGh”izAk—l + 2;,123|Ph|iz,\kl < %Hch”iz,\k—l +%||d];l_lph||izAk
Thus
By, ((@n, 04, ), (Hns Ty Gh)) = ||P];Tlffh||,2_2,\k—1 + ||d2716h|\iz,\k - %Hch”izAk—l + Hdlﬁa’hHIZ_zAkH
10t 10?3 1 Pl
> %HGhHizAk—l +(1=C1?) || On| 72 i + | Onl[72 50
0+ 102 oy 5 0 ol

Note that dz W = dz wy, and, by Theorem 21,

w;||L2Ak < C”d]/(,wh”LzAkH- It follows then

Byi((0n, 00, Bn), (U Ty 61)) = Cll (0n, 01, B0) 5,

with C depending on the Poincaré inequality only. The inf-sup condition (4.10) is then proved and the
well-posedness of (4.8) is verified.

4.2. A novel mixed element scheme

It is natural to consider an approach where both d* and §; are operated in a dual way, and we begin
with this “completely” mixed formulation: to find (®°, {¢,6°,0°) € L2A* x HAF x HAF1 x HAK,
such that, for (1,1,7,¢) € L*A* x Hi AF! x HAM1 x §AF,

(0°,6) 120k =0
(8%, M) 2Ak+1 —(@%,8r 1M p2pr =0
(0°,T) 2 pk-1 —<(Dc,dk717>L2Ak =0
(O, W) p2pr +(Or 186, 1) 24k +<dk710ca”>L2Ak = (f, 1) 2 px

4.11)
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Lemma 34 For f € L>A, the problem (4.11) admits a unique solution (®°,{¢,c¢,9°), and
10| 2 p% + 11856,y + 10 gt + 19 2px < CIE]l 2k (4.12)

Further, ¢ = d*0°, 6¢ = 8, 0°, and @° solves (4.2).

Proof For (4.12), we only have to verify Brezzi’s conditions, which hold by the orthogonal Hodge
decomposition

L2Ak — %(dkil,HAkil) @L ﬁAk @L %(6k+17HgAk+l),

together with the closeness of Z(d* !, HA*"1) and 2 (81, H;A*'!). The remaining assertions are
straightforward. The proof is completed. O

A lowest-degree stable discretization of (4.11) is: find (wf, {5, 05, 0F) € PN (9,) x WZOAH] X
WA x 7€ AK, such that, for (i, Th, Thy Gh) € PoA* () x Wi A s WieAR1 5 ¢ AK,

(0, Gn) 2k =0
<P§+1C}f7pﬁ+]nh>L2Ak“ - - _<w1276ﬁ+11nh>L2Ak =0
P, (zﬁ,lP}; T)peak-t —(05, &) ) oA =0
(O, M) 2 4k (k185 s i) 25k +(dy, 0 i) 2 pk = (£, i) 2
(4.13)

Lemma 35 Given f € L>AX, the problem (4.13) admits a unique solution (w;,85,05,95), and
i ll2pk +11Gillsy., + 10 gt 1051l 2a% < ClIF 1l 2%
The constant C depends on pic(8y.41, WioA*1) and pic(dﬁ_l,chAk_l).
Again, for the well-posedness of (4.13), we only have to verify Brezzi’s conditions, which holds by
the discrete Hodge decomposition (3.6). The stable decompositions (3.6) comes true by the aid of the

nonconforming space WECA". Hence (4.13) is a new scheme hinted in nonconforming finite element
exterior calculus.

4.3. Equivalences among lowest-degree mixed element schemes

Lemma 36 Ler (w;,(;, 07, 97), (a)h,Gh , 19p) and (a)h , Ch ,19d) be the solutions of (4.13), (4.8) and
(4.5), respectively. Then

Ot =08, O =&F, Phof = of, Srof =P 'of, 811 ¢t =PiE—df T of — 0, (4.14)

ﬂp - 19‘,1, Gh7 Pha)h (Oh, dhwh == Pﬁ—i_lcﬁ, d]hc_lcl? == P]]flff 8k+1€; - 19‘,;:, (415)

d _ qoP pk+lrd _ gk d _ pk—1

1

, Sk Gl +dyTof =Pif— 5. (4.16)
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Proof Let (of, (3, 9) be the solution of (4.5). Then, with a 6, € WICAKT,

(OF 1) o pk + (S 1 &8 1a) 2 pk + (Sk @ Sifhn) 2 k1

+(d} "G, n) 20k — (O, Sitn) p2pk-1 = (£, P ) 20

for any W, € 2"~ AX(%,). Choosing arbitrarily p, € ZyA* (%), we have

O+ 81 G+ dh 1Ty, = P, 4.17)
and
(81, Sicttn) 2k 1 — (Chy Sxttn) paai 1 =0, Yy € 2,7 AN()),
which leads to that 5o = Pk_lﬁh Further, noting that (8; 0%, 7,),2pc-1 = (@, d57,) 206 for 7, €

WiAK=1 we obtain (P}~ loh,Pk ™) a1 — (08, d517,) 206 = 0 for 7, € WICAKT,

In all, (P ha)h , gh O, 19,;*) c %Ak(%) x Wi ARFL s Wie AR gyie AR satisfies the system (4.13),
and thus (Ph a)h , Ch ,Op, ﬁh ) = (@}, ;. 05, 0). This proves (4.14). Similarly can (4.15) be proved, and
(4.16) follows by (4.14) and (4.15). The proof is completed. [

The convergence analysis of (4.13) and (4.8) follow directly by Remark 33 and Lemma 36, and we
omit the details here.

4.4. A decomposition processes for solving (4.13)

Firstly, we decomposition (4.13) to two subsystems.

Lemma 37 Let (0f, (¢, 07, 0F) be the solution of (4.13), let &, and @, € Wi AT be such that, for
any My, and Yy, € W;;OAI""1

{ (PLEE Py ) apket —(8ks1On, Sks 1 M) 2pk =0 (4.18)
(Ok+185, Ok 1 W) r2pk = (£ 0kt Wi r2pr 7

and let oy, and py, € WECA]“’1 be such that, for any 1, and ®), € WZCA"’I,

{ <P1;11:116}3,PI];I:llTh>L2Ak7l <dl;l lph’ Th>L2Ak =0 k—1 . 4.19)
(dy, 0p, ) On) 2 pk = (f,d,” @) 20k
Then

& = Ch, Of = 0on, and @ ="' p+ Sxs1 0. (4.20)

Proof The existence of solutions to (4.18) and (4.19) is easy to verify, where {;, and o}, are uniquely
determined, ¢y, is uniquely determined up to A (6441 7W2‘lOAkJrl ), and py, is uniquely determined up to
A (d~1 WiAk=1) By the Hodge decomposition of ZyA¥(%},), we can decompose @y, € PoAk (%)
to &f = 1f + 8195 +df ' pf with 1 € $5,A%, ¢f € Wi Al and pf € WIA*!, and df ' pf and
Ok+1¢y, are uniquely determined. We can similarly write (;, = X, + Ox41 Wi + d];fl @y,. Substituting the
decompositions of @, and gy, into (4.13) leads to subsystems (4.18) and (4.19), and further (4.20). [J
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Noting that both (4.18) and (4.19) are each a saddle problem whose solution is not unique, we are
now to further decompose them to series of semi positive definite problems to solve.

Lemma 38 Ler ($;, &', @))) be a solution of the sequence of problems below:

1. find{; e W,*;OA"“, such that
(81418 i1 W) pak = (6. Bu1 W) ok, VW € WipAS T 4.21)
2. find &; € WA, such that
(&7 fvi) ot = (Skr1 Gy Vi e, ¥V € WHCAS, (4.22)
3. find @; € WZOA"H, such that
(Br104, S M) p2pr = (85 M) 2wt V1 € WigAFL (4.23)

Let (&, @p) be a solution of (4.18). Then

— 1)
Cn = <n—)k K2 (8r18) +dEER, and Sip 1@ = 8110} (4.24)

Proof  Evidently, ({7, &, ¢;) exists and is unique up to A (Sgi1, WipAK) x 47 (df, WreAK) x
e/V((sk+1 ,WZOAk+1), further 5k+1 C}j = 5k+] gh- Since <P§+lgh,Pz+lnh>L2Ak+1 = <5k+1§h7 6k+lnh>L2Ak
for any 1;, € WiAF! it holds that Pi1&), is orthogonal to A (8x11, Wi AFt1), and thus PAT1 ¢, €
22 (X, Wi AK). Namely, there exists a &; € WICAX, such that §, = (&, — Py &) +dXE;. As for any
Vi, € WECA", (Ok+18hs Vi) p2ar = (Ch,dﬁw) [2ak+1, it holds further that, with dﬁvh being piecewise
constant, (d’;lé,j,dﬁvm 2kt = (8k018;, Vi) 24k It follows by the homotopy formula that §, =

-1 nk ) 4 )
(nf)k K2(5k+1Ch) +d§§h' Then (Ox+1Pn, Sk1Mn)2ak = <P2+IC}?’PI}(L+1nh>L2Ak“ = <dﬁéh7nh>L2A"“

for 17, € W;, A", and it thus follows that 8441 @, = 8x+1¢j; . The proof is completed. [

Similarly we have the decomposition of (4.19).

Lemma 39 Let (0},1;,p;) be a solution of the sequence of problems below:

1. find o} € WECA]"I, such that
(d o, d @) o = (.45 @) opk, YO, € WA (4.25)
2. find 1j € Wiy A, such that
(8117, 81xn) p2niar = (105 ) p2ans Y € WipAK; (4.26)
3. find pj € W;}CA"_I, such that

<dzilpﬁ,dlflilfh>1‘2/\k = (013, Th>L2Ak—l, V1, € WECAkil. “4.27)



NONCONFORMING FINITE ELEMENT SPACES 29

Let (oy, pr) be one solution of (4.19). Then

1
Op = %Kh(dlf,flcﬁ) +8y, and d;"'o, =} 0. (4.28)

Remark 40 [t is illustrated that the system (4.13), as well as (4.5) and (4.3), can be transferred to
a series of semi positive definite problems to solve. Particularly, these systems can be solved without
knowledge of $3;,A*, which consists of globally supported functions and which cannot generally be
figured out. A decomposition similar to Lemma 37 can be carried out onto (4.5) without the aid of
WZCA" and onto (4.8) without the aid of WZOAI‘. However, the further decomposition of (4.18) and
(4.19) will rely on the combinational utilization of WECAk and WZOAk together.

5. Concluding remarks

This paper presents a unified construction of finite element spaces for HA* in R”, extending the
Crouzeix-Raviart paradigm to differential forms. Beyond error estimation as usual, differences from
existing classical schemes are preliminarily demonstrated using eigenvalue problems as examples, and
can be further investigated through additional applications, for instance where a locally defined stable
interpolator matters. Actually, the role of a locally-defined stable interpolator used to be illustrated
by the correct computation of the convex variational problems [34]. A new way to impose inter-cell
continuity is indicated, and finite element spaces can be constructed in future for various problems by
this new approach, as well as on non-simplicial meshes. This approach suggests potential extensions to
nonstandard and nonconforming meshes which will be discussed in future. This paper focuses on pure
Dirichlet and pure Neumann boundary conditions. It is noteworthy that mixed boundary conditions have
recently been investigated in [14, 27, 29]. The new approach also works for that and can be discussed
in future. Relevant to the equivalences established in [30] between the Crouzeix-Raviart element
discretization and the Raviart-Thomas element discretization for Poisson equations, the equivalence
between the conforming and nonconforming finite element schemes on the Hodge Laplace problem in
Section 4 is the generalization of [30] with new interpretations.

Within classical FEEC theory, discrete Hodge decompositions for HAX spaces are established,
allowing for in-contractible domains, as demonstrated in (5.6) of [4], which reads V,f = %ﬁ ot
ﬁﬁ ot By ,» where %y, is the range of a globally defined operator d}fh. These decompositions can

be rebuilt based on WZCA" . Beyond this, the theory of nonconforming finite element exterior calculus
contains discrete Helmholtz decompositions and Hodge decompositions for piecewise constant k-
forms corresponding to L?>A* for both contractible and in-contractible domains. Notably, the Hodge
decompositions presented in this paper differ from those in [4] in that all discrete operators involved are
locally defined, i.e., cell by cell. In other words, the discrete derivative and coderivative operators are
both local. Inspired by [26], discretization scheme for the Hodge Laplace problem with local derivatives
and local coderivatives will be studied in future. Recently, in two and three dimensions, discrete
Helmbholtz decompositions have been explored not only for piecewise constant but also for piecewise
affine vector and tensor fields [11]; it is intriguing to observe that the non-Ciarlet type finite element
spaces of [21, 43] have been utilized as a basis therein. The generalization of the results presented in this
manuscript to higher-degree vector and tensor fields in higher dimensions will be discussed in future.
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In Section 3.2, a reciprocal causation (3.5) between two discrete complexes is presented. This can
be viewed a discrete analogue of the dual complexes composed by adjoint operator pairs (namely d
and 6), defined in Section 4.1.2 of [4]. We note that kinds of dualities used to be studied in, e.g.,
[7,8,12, 18, 24,29, 32,33,37,40]. Prior works primarily address dual representations of finite element
spaces; dual grids have usually been used for the construction of discretized dual complexes. In this
paper, the discrete dual complexes by function spaces are both constructed on a same grid. Therefore,
the duality argument can be designed to derive uniform discrete Poincaré inequalities leveraging the
adjoint relationship between d* and &y, formulating some analogue of the closed range theorem; see
Section B for a quantifiable version of the closed range theorem. Further, our approach avoids nonlocal
operators when establishing dual connections; all discrete operators involved are local. The discrete
complex duality can be expected further studied in future. Particularly, the validity of the structure of
complex and the commutative diagram may not necessarily depend on the dualities (1.3) or (2.1).
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A. Proofs of Lemmas 22, 23 and 24

Proof of Lemma 22 Decompose WIAK = ¢/ (d5, WI°A¥) &+ (WIAK)-, orthogonal in L2AX(Q).

Given o, € (WI°A¥)~, decompose orthogonally o, = &, + 0, such that &, € PAK¥,)

and oj € EBE?KT(QZOA]‘H(T)). As AN (df, WIAK) C P2yAX(T), we have further o} is
T€Y,

orthogonal to 4 (df, WI°A); therefore, &, is orthogonal to .4 (df, WIA®), and further &, €

R (8k41, WioA*T1) by Theorem 25. Decompose Wi AFTl = 4/ (8p 1, WinAKD) @b (Wi ARTT)-.

Then % (8ir1, WigAK) = (811, (WioAF1)2). Therefore,

1Gullone = sup (G Op 1 M) p2pk sup (07, 81y 1) 2k + (AR O}, L) 2 4k
Ak = TR
L€ (Wi ARF1) |6 +1Mnll 2 7% Ly E (Wi AkH1)- 16 +1Mnll 2 p%
[l 2 pk1
< HGﬁ”LzAk + ||dzcﬁ||L2Ak+l sup LA

L€ (Wi AR+ ) 184+ 2%
< ||dj 0l 2 px 1 ic(dly, Py A (%)) + || d],65 | 2 a1 PiC(8ir 1, WigA ).

Then ||| 24% < (|Gl z2a¢ + (105 || 24x < ||dZGh||L2Ak+l(ZPiC(dllza521_/\]((%))+Pic(5k+1’WZoAk+l))-
This completes the proof. O

Remark 41 No continuous problem or Sobolev space is used as a bridge here, and this is a direct
relation based on the discrete adjoint connection between WZOA"+1 and WECAI‘.

Lemma 42 There exists a constant Cy,,, depending on the regularity of T, such that

11l 2ak(ry < Cinhr |1l 2pke1 (1), for p € kr(PoNTHT)). (A.1)



NONCONFORMING FINITE ELEMENT SPACES 31

k+1 )
Proof Givenu= ) Cq (Z (—1)/FE% X A dXP2 A A P A KGN dx‘xk“) :

QElXy 10 j=1

k+1

Ml = L Ca X (1) IVES dx® A A dx®E A dXEA A dx
aelXy, Jj=1 L2AK(T)
k+1 _
=( Y Ca Y (—1)/TIVEY AT A A AT A AT A A dx P
(XGHXk‘n ]:l
k+1 i+1 ! ! /! / /
Y, Co Y ()RS AXA A A dx T A dx T A A dx B
a’EHXk.,l =1 LZA"(T)
k+1k+1 )
=Y Y ccu) Z 1)7He% - % ( dx A= AP KB A A dx B
a€lXy , o’ €lXy j=li=
AXPT A A X% A XD A A dx“’k+n> = (k+1)|T|Y.C2,
L2AK(T) *
2
k _ 2 a o a 2 2
and Hd pnceiggy = D7 [ L Cadx®™ A dx2 A dxi 7Y
o LZAk+1(T) o
Namely

||d /JHLZAHI =Vvk "J‘HIA"

Therefore, by noting that fo’ 0, with a constant C,, depending on the regularity of 7, we obtain

||ﬂ||L2Ak(T) < Cahr |l gk ry = Ca(k + 1)71/2/’””dk.uHLzAk“(T)'
This completes the proof. [

Proof of Lemma 23 Evidently,

T
pic(dl, 2, AK(%,)) = Sup el
T € @ ETK Ak+1( )) Hdh’rh||L2Ak+l
T€Y,
T
= max sup ”HLA (A2)

T tekp (oA 1(T)) HdkTHLzAkH(T)

By Lemma 42 and (A.2), pic(d}, 22 AK(4,)) is of €(h) order. O

Proof of Lemma 24 By virtue of Lemma 22 and Remark 16, pic(5k+1,WzoAk+l) is controlled by
pic(d}, WI°A¥) the same way. Further by Lemma 23, we obtain Lemma 24. O
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B. A quantifiable closed range theorem

In this part, we establish a quantifiable version of the classical closed range theorem, in order to show
how Lemma 24 can be viewed as a discrete analogue of the closed range theorem.

Let X and Y be two Hilbert spaces with respective inner products (-,-)x and (-, )y, and let (T, D) :
X — Y be an unbounded linear operator, D being the domain dense in X. The adjoint operator of
(T,D), denoted by (T*,D*), is defined by

(T"w,v)x = (w,Tv)y, VveD, (B.1)

and the domain D* consists of such w € Y that there exists an element in X taken as T*w to satisfy
(B.1). The closed range theorem (cf. [4, 10, 25, 41] and other textbooks) asserts that

Z(T,D) is closed <= Z(T*,D*) is closed. (B.2)
It further follows by Lemma 20 that
pic(T,D) < oo <= pic(T*,D*) < oo. (B.3)
The theorem below further gives a preciser quantification of the closed range theorem.

Theorem 43 For (T,D): X =Y and (T,D) : Y — X a pair of closed densely defined adjoint
operators,
pic(T,D) = pic(T, D). (B.4)

Proof Recalling the Helmholtz decomposition X = .4 (T, D) &+ (T, D), we have

D° =Dn (A4 (T,D))* =DNZ(T,D). (B.5)
Therefore, provided that 0 < pic(T,ID) < oo and thus Z(T,ID) = Z (T, D), given v € D-, there exists
aw € ID-, such that v=Tw, then |w||y < pic(T,DD)||v|)x and

VK = (v, v)x = (v, Tw)x = (Tv, W)y < | Tv]ly|lw vy < pic(T, D) [T lvllx.

Therefore, ||v||x < pic(T,ID)||Tv||x for any v € D~ and pic(T,D) < pic(T,ID) < oo. Similarly, co >
pic(T,D) > pic(T,D); note that (T, D) is the adjoint operator of (T, D). Namely, if one of pic(T,D)
and pic(T, D) is finitely positive, then pic(T,D) = pic(T, D).

If pic(T,ID) =0, then Z(T,ID) = {0} and D~ = {0}. It follows then pic(T,D) = 0. Finally, if one
of pic(T, D) and pic(T,ID) is 4o, then so is the other. The proof is completed. [J
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