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This paper constructs a unified family of nonconforming finite element spaces for HΛk in Rn (0 6
k 6 n, n > 1). The spaces employ piecewise Whitney forms as shape functions, and include the
lowest-degree Crouzeix-Raviart element space for HΛ0. Optimal approximations and uniform discrete
Poincaré inequalities are presented. Based on the newly constructed finite element spaces, discrete
de Rham complexes with commutative diagrams, and the discrete Helmholtz decomposition and
Hodge decomposition for piecewise constant spaces are established. All discrete operators involved
are local, acting cell-wise. A framework of nonconforming finite element exterior calculus is then
established, and is naturally connected to the classical conforming one. The cooperation of conforming
and nonconforming finite element spaces leads to new discretization schemes of the Hodge Laplace
problem. The new finite element spaces are constructed by a novel approach that seeks to mimic the dual
connections between adjoint operators; novel construction methods and basic estimations are presented.
Although the new spaces do not fit Ciarlet’s finite element definition, they admit locally supported basis
functions each spanning at most two adjacent cells, which makes the computation of the local stiffness
matrices and the assembling of the global stiffness matrix implementable by following the standard
procedure. Some numerical experiments are given to show the implementability and the performance
of the new kind of spaces.

Keywords: exterior differential form; nonconforming finite element space; discrete Poincaré inequality;
discrete de Rham complex; commutative diagram; discrete Helmholtz-Hodge decomposition; discrete
Poincaré-Lefschetz duality; Hodge Laplace problem.

1. Introduction

Conforming finite elements for exterior differential forms have been extensively studied, based on
which conforming finite element exterior calculus has been well established; we refer to, e.g.,
[3, 4, 6, 9, 23] and the references therein for details. Naturally, the research has now reached a point
where extension is appropriate to nonconforming methods. Well-designed nonconforming methods can
possess many characteristics that conforming ones lack, with the (lowest-degree) Crouzeix-Raviart
element [17] being a typical example. The Crouzeix-Raviart element, originally designed for H1 which
is equivalent to HΛ0 for 0-forms, is among the most widely used finite elements. It can be distinguished
from conforming ones with kinds of practically crucial properties, including, e.g.,
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• Different from conforming interpolators discussed in [13, 16, 19, 20, 22, 27, 28, 38], the Crouzeix-
Raviart element admits a cell-wise defined1 stable interpolator which works for functions in H1

without using the inter-cell regularization, smoothing or averaging techniques.
• In the construction of Helmholtz orthogonal decomposition of piecewise constants, which cannot

be established when restricted to conforming element spaces, the lowest-degree Crouzeix-Raviart
element plays an irreplaceable role [5, 31].

• Applied to the computation of Laplacian eigenvalues, the lowest-degree Crouzeix-Raviart element
scheme may yield asymptotic lower bounds to the exact eigenvalues [2], which differs essentially
from conforming ones.

These properties may indicate the potential theoretical and practical significance of nonconforming
methods compared to conforming ones. This paper investigates nonconforming finite element
discretizations for general exterior differential forms, and particularly, generalizes the Crouzeix-Raviart
element for HΛ0 to a unified family for HΛk for 06 k 6 n in Rn by a novel approach. Nonconforming
finite element exterior calculus can then be established based on these spaces.

Attempts to generalize the Crouzeix-Raviart elements have been devoted to the H(div) problems
[1, 35, 39]. Following directly from Crouzeix-Raviart element, these elements all use the integral of
the normal components as nodal parameters. For these elements, the crucial property of the Crouzeix-
Raviart element, namely cell-wise defined nodal interpolator, cannot be validated for functions with
only H(div) regularity, nor can an associated discrete Helmholtz decomposition be established. Further,
if we try to embed such an H(div) element into a discretized de Rham complex, which is a crucial issue
for the discretization of exterior differential operators, the continuity restriction for the corresponding
H1 finite element is the evaluation at vertices. As well known, the continuity of the evaluation at vertices
is neither sufficient nor necessary for a finite element to work for H1 problems, and the weak continuity
condition for these H(div) elements is not as reasonable as the original Crouzeix-Raviart element. It
is suggested in [11] that vector Crouzeix-Raviart element can be used for H(curl) in three dimension;
though, the same obstacles can be come across.

Different from existing attempts, instead of establishing the space by imposing local continuity
primally, the main ingredient of the new approach is to reveal and mimic the relationship between
adjoint operators, inspired by a new interpretation of the Crouzeix-Raviart element. Actually, beyond
being a consequence, the well-known integration by part formula, on the lowest-degree Crouzeix-
Raviart element space V CR

h and the lowest-degree Raviart-Thomas element space V˜RT
h0 on a grid Gh,

∑
T∈Gh

∫
T

∇vhτ˜h +
∫

T
vhdivτ˜h = 0, for vh ∈V CR

h and τ˜h ∈V˜RT
h0 (1.1)

also serves as a sufficient condition for a piecewise linear polynomial function to belong to V CR
h ,

in accordance with the adjoint relation between (div,H0(div)) and (∇,H1). Namely, V CR
h can be

equivalently figured out as

V CR
h =

{
vh is piecewise linear, such that ∑

T∈Gh

∫
T

∇vhτ˜h +
∫

T
vhdivτ˜h = 0 ∀τ˜h ∈V˜RT

h0

}
. (1.2)

1 Here and in the sequel, by “locally defined” or “cell-wise defined”, we mean if two functions u and v are equal on a cell T , then
their respective interpolations Iu and Iv are equal on T .
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This observation then hints quite a natural approach to construct a finite element space by constructing
discrete adjoint relationships. By the aid of the existing conforming Whitney forms, in this paper, the
methodology can be directly applied to design a family of nonconforming finite element spaces for HΛk

with piecewise Whitney forms.

The approach of inheriting the adjoint relationship can actually lead to natural advantages. Several
properties emerge naturally from the construction of the finite element spaces. A basic one is the
consistency property, which follows directly. Then, cell-wise defined global interpolators can be
constructed for functions in HΛk with no extra regularity needed; the interpolators are stable in broken
HΛk norm and provide optimal approximation to all functions in HΛk. Combined with the global
interpolators, these newly constructed spaces are connected by piecewise operations of dk to form
nonconforming finite element de Rham complexes, as well as commutative diagrams with the de Rham
Hilbert complexes. Further, the Helmholtz and Hodge decompositions of the piecewise constant k-forms
follow from the discrete adjoint relation. It is worth noting that the Poincaré-Leftschetz duality Theorem
26 can be reconstructed by the respective discrete harmonic spaces by conforming and nonconforming
finite element spaces. With the structural properties given in Section 3, a framework of nonconforming
finite element exterior calculus is established, and is naturally linked to the classical conforming one by
the discrete complex duality (3.5) and the discrete Poincaré-Lefschetz duality.

On the other hand, we have to remark that, in contrast to the conforming Whitney forms,
the nonconforming finite element spaces defined in this paper may not correspond to a “finite
element”(triple) in Ciarlet’s sense [15]. Therefore, some basic features of the finite element methods
cannot be dealt with in standard ways. Two main obstacles are: first, it is not any longer straightforward
to figure out the basis functions of the global finite element spaces, and second, it is difficult, if not
impossible, to follow the standard procedure to prove the uniform discrete Poincaré inequalities. In
this paper, we develop nonstandard approaches to circumvent the obstacles. For every newly designed
finite element space, we prove the existence of a set of basis functions which each is supported on
no more than two cells, and the relevant numerical scheme can be implemented by the standard
routine for the finite element in Ciarlet’s sense. Some numerical experiments are provided to verify the
implementability of the new finite element functions. We also prove that the constant of the discrete
Poincaré inequality of a newly designed finite element space is asymptotically equal to that of an
associated conforming Whitney form space which is proved uniformly bounded; it then follows that
the discrete Poincaré inequality holds uniformly for the new spaces.

Since nonconforming finite element spaces are constructed for (dk,HΛk) and particularly discrete
Hodge decompositions are constructed accordingly, new discretization schemes can be developed.
Meanwhile, dual structures can be further investigated with more applications. We investigate the dual
roles of conforming and nonconforming spaces by constructing some new finite element schemes for
the Hodge Laplace problem with nonconforming spaces. The two finite element spaces connect with
each other within their respective discretization schemes through classical mixed formulations, and their
roles are complementary within the discretization scheme of a new mixed formulation.

The remainder of the paper is organized as follows. In the remaining part of this section, we collect
some preliminaries and notations. In Section 2, we use the two-dimensional H(div) problem for instance
to illustrate the main features of the new type of finite element spaces, including the construction of
the new space, the locally-supported basis functions, the basic error estimation by cell-wise defined
interpolators, and numerical experiments for the implementability of the new finite element functions.
In Section 3, a family of nonconforming finite element spaces are constructed for HΛk in Rn, 06 k6 n,
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with the Crouzeix-Raviart element space being the one for HΛ0. Optimal approximation and uniform
Poincaré inequalities are established. Based on these finite element spaces, theory of nonconforming
finite element exterior calculus is constructed, including the Helmholtz/Hodge decomposition for
piecewise constant k-forms, the discrete Poincaré-Lefschetz duality, the discrete de Rham complex
and commutative diagrams. Then in Section 4, the newly-designed nonconforming spaces are used for
the discretization of the Hodge Laplace problem. The correspondent and complementary connections
between the conforming and nonconforming spaces are investigated with classical and new mixed
formulations. Finally, in Section 5, some conclusions and discussions are given.

Preliminaries and Notations In the sequel of the paper, we use N and R to denote the null space and
the range of certain operators. Namely, for example, N (T,D) denotes {v ∈ D : Tv = 0}, and R(T,D)
denotes {Tv : v ∈ D} . For a Hilbert space H, we use the notations⊕⊥H and	⊥H to denote the orthogonal
summation and orthogonal difference; namely, for two spaces A and B in H, the presentation A⊕⊥H B
implies that A and B are orthogonal in H, and evaluates as the direct summation of A and B; for
A ⊂ B ⊂ H, B	⊥H A evaluates as the orthogonal complementation of A in B. The subscript H can
occasionally be dropped.

For Ω a domain and T ⊂ Ω, we use EΩ
T : L1(T )→ L1(Ω) for the extension operator defined by

EΩ
T v = v on T and EΩ

T v = 0 elsewhere. For VT ⊂ L1(T ), we use EΩ
T VT for short of R(EΩ

T ,VT ).
We use dk and δ k for the exterior differential and codifferential operators on Λk. δ k = (−1)kn ?

dn−k?, ? being the Hodge star operator. Denote, on the domain Ξ,

HΛ
k(Ξ) :=

{
ω ∈ L2

Λ
k(Ξ) : dk

ω ∈ L2
Λ

k+1(Ξ)
}
, 06 k 6 n−1,

and by H0Λk(Ξ) the closure of C ∞
0 Λk(Ξ) in HΛk(Ξ). Denote

H∗Λk(Ξ) :=
{

µ ∈ L2
Λ

k(Ξ) : δ kµ ∈ L2
Λ

k−1(Ξ)
}
, 16 k 6 n,

and H∗0 Λk(Ξ) the closure of C ∞
0 Λk(Ξ) in H∗Λk(Ξ). Ξ can occasionally be dropped. The spaces

of harmonic forms are HΛk := N (dk,HΛk) 	⊥ R(dk−1,HΛk−1), H0Λk := N (dk,H0Λk) 	⊥
R(dk−1,H0Λk−1), H∗Λk := N (δ k,H∗Λk)	⊥ R(δ k+1,H∗Λk+1), and H∗0Λk := N (δ k,H∗0 Λk)	⊥
R(δ k+1,H∗0 Λk+1). As the Helmholtz decompositions hold that

N (dk,HΛ
k)⊕⊥R(δ k+1,H∗0 Λ

k+1) = L2
Λ

k = R(dk−1,HΛ
k−1)⊕⊥N (δ k,H∗0 Λ

k),

it follows that HΛk =H∗0Λk and H0Λk =H∗Λk. This is the Poincaré-Lefschetz duality(cf. [4, Section
4.5.5]) which links two dual complexes connected by dk and δ k, respectively.

The space of Whitney forms is denoted as ([3, 4, 6]) P−
1 Λ

k = P0Λ
k + κ(P0Λ

k+1), where the

Koszul operator κ is κ(dxα1∧·· ·∧ dxαk) :=
k

∑
j=1

(−1) j+1xα j dxα1∧·· ·∧ dxα j−1∧ dxα j+1∧·· ·∧ dxαk for

α ∈ IXk,n :=
{

α = (α1, . . . ,αk) ∈ Nk : 16 α1 < α2 < · · ·< αk 6 n, N the set of integers
}

, the set of

k-indices, k6 n. Note that P−
1 Λ0 =P1Λ0 and P−

1 Λn =P0Λn. Denote the Whitney forms associated
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with the operator δ k by P∗,−
1 Λ

k := ?(P−
1 Λ

n−k). Note that

N (dk,P−
1 Λ

k) = R(dk−1,P−
1 Λ

k−1) = P0Λ
k = R(δ k+1,P

∗,−
1 Λ

k+1) = N (δ k,P
∗,−
1 Λ

k). (1.3)

Denote, on a simplicial subdivision Gh of Ω, 06 k 6 n,

P−
1 Λ

k(Gh) :=
⊕

T∈Gh

EΩ
T P−

1 Λ
k(T ), and P∗,−

1 Λ
k(Gh) :=

⊕
T∈Gh

EΩ
T P∗,−

1 Λ
k(T ). (1.4)

Here and in the sequel, the subscript “ ·h ” denotes mesh dependence. In particular, an operator with the
subscript “ ·h ” indicates that the operation is performed cell by cell.

The conforming finite element spaces with Whitney forms are WhΛk :=P−
1 (Gh)∩HΛk, Wh0Λk :=

P−
1 (Gh)∩H0Λk, W∗

hΛk := P∗,−
1 (Gh)∩H∗Λk, and W∗

h0Λk := P∗,−
1 (Gh)∩H∗0 Λk. Note that the spaces

defined this way are respectively identical to the finite element spaces with piecewise Whitney forms
defined by the continuity of the nodal parameters [4]. Denote the spaces of discrete harmonic forms
by HhΛk := N (dk,WhΛk)	⊥R(dk−1,WhΛk−1), Hh0Λk := N (dk,Wh0Λk)	⊥R(dk−1,Wh0Λk−1),
H∗hΛk :=N (δ k,W∗

hΛk)	⊥R(δ k+1,W∗
hΛk+1), and H∗h0Λk :=N (δ k,W∗

h0Λk)	⊥R(δ k+1,W∗
h0Λk+1).

Given T a simplex, denote, associated with T , x̃ j = x j−c j, where c j is a constant such that
∫

T x̃ j = 0,
and κT , a Koszul operator on T , by for α ∈ IXk,n

κT (dxα1 ∧·· ·∧ dxαk) :=
k

∑
j=1

(−1)( j+1)x̃α j dxα1 ∧ . . . dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk .

Then dk−1κT (dxα1 ∧ . . . dxαk) = k dxα1 ∧ . . . dxαk . By the aid of κT , we can rewrite the Whitney forms
as P−

1 Λk(T ) = P0Λk(T )⊕⊥ κT (P0Λk+1(T )), orthogonal in L2Λk(T ). We further use κh to denote
the operation of κT cell by cell. Denote κδ := ?◦κ ◦?, κδ

T := ?◦κT ◦?, and κδ
h := ?◦κh ◦?.

2. A nonconforming H(div) finite element space

In this section, we use the two-dimensional H(div) problem for instance to illustrate the main features
of the new type of finite element spaces studied in this paper.

Let Ω ⊂ R2 denote a polygon. As usual, we use ∇ and div to denote the gradient operator and
divergence operator, respectively, and we use H1(Ω), H1

0 (Ω), H(div,Ω), H0(div,Ω), L2(Ω) and L2
0(Ω)

to denote certain Sobolev (Lebesgue) spaces. For here, we denote vector-valued quantities by undertilde
“·˜”. We use (·, ·) with subscripts to represent L2 inner product.

For this planar domain, we specifically use Th for a shape-regular subdivision of Ω with mesh size h
that consists of triangles, such that Ω = ∪T∈ThT and every boundary vertex is connected to at least one
interior vertex. Denote by Eh, E i

h, E b
h , Xh, X i

h and X b
h the set of edges, interior edges, boundary edges,

vertices, interior vertices and boundary vertices, respectively. We use n for the outward unit normal
vector with respect to a triangle.

Let V1
h denote the continuous piecewise linear element space, and V˜RT

h denote the Raviart-Thomas
[36] element space of lowest degree on Th. Denote V1

h0 := V1
h∩H1

0 (Ω) and V˜RT
h0 := V˜RT

h ∩H0(div,Ω).
On a triangle T , denote the space of the lowest-degree Raviart-Thomas shape functions by RT(T ) :=
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span
{

α˜+βx˜ : α˜ ∈ R2,β ∈ R
}

. Then

R(div,RT(T )) = R= N (∇,P1(T )), and N (div,RT(T )) = R2 = R(∇,P1(T )). (2.1)

Denote RT(Th) :=
⊕

T∈Th

EΩ
T RT(T ). We define the nonconforming finite element spaces

RTnc
h :=

{
τ˜h ∈ RT(Th) : ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀vh ∈ V1
h0

}
, (2.2)

and

RTnc
h0 :=

{
τ˜h ∈ RT(Th) : ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀vh ∈ V1
h

}
. (2.3)

Note that RTnc
h does not confirm to Ciarlet’s finite element definition. In Section 2.1, we will present

sets of locally supported basis functions for each of RTnc
h and RTnc

h0 for their implementability. In
Section 2.2, we establish a cell-wise defined projective interpolator for H(div), and prove optimal
approximation and stability properties of RTnc

h and RTnc
h0 directly without the aid of the classical

Raviart-Thomas element.

2.1. Locally supported global basis functions of RTnc
h0 and RTnc

h

2.1.1. Structures of RT(T ) on a triangle T and RT(Th) on Th
For a cell T ∈Th, we use ai (located at a˜i) and ei for the vertices and opposite edges, hi being the height
on ei, i = 1 : 3. Let λi be the barycentric coordinates. Let |ei| and |hi| denote the length of ei and hi,
respectively, and let S denote the area; cf. Figure 1.

a1

a2 a3

−1/|e1|

+1/|e2|
+1/|e3|

e1

e2e3

n1

n2n3 b˜a1
T

a1

a2 a3

+1/|e1|

−1/|e2|
+1/|e3|

e1

e2e3 b˜a2
T

a1

a2 a3

+1/|e1|

+1/|e2|
−1/|e3|

e1

e2e3 b˜a3
T

FIG. 1. Illustration of the three basis functions of RT(T ) on a cell T . We pay particular attention to the sign of the outward
normal component at every edge.
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Denote

b˜ai
T :=

1
2S

(x˜+a˜i−a˜ j−a˜k), i = 1,2,3, {i, j,k}= {1,2,3} . (2.4)

Then,
{

b˜ai
T , i = 1,2,3

}
form a basis of RT(T ). Particularly, b˜ai

T ·n j|e j = (1−2δi j)/|e j|, and

(b˜ai
T ,∇λ j)T +(divb˜ai

T ,λ j)T = δi j, 16 i, j 6 3. (2.5)

The identities (2.1) confirm the existence of a basis of RT(T ) that satisfies the dual relation (2.5), and
(2.4) further gives the precise formulation of them. See Figure 1 for the illustrations and profiles of the
local basis functions. Then

RT(Th) =
⊕

T∈Th

EΩ
T RT(T ) =

⊕
T∈Th

⊕
M∈Xh∩∂T

span
{

EΩ
T b˜M

T

}
=
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
.

2.1.2. Two types of basis functions in RTnc
h0 and RTnc

h
For M ∈Xh, denote by ψM the basis function of V1

h such that ψM(M) = 1 and ψM vanishes on other
vertices. We can rewrite (2.5) to the lemma below.

Lemma 1 For M,M′ ∈Xh and T,T ′ ∈Th, such that M ∈ ∂T and M′ ∈ ∂T ′, with

δMM′ denoting
{

1, M = M′

0, M 6= M′ and δT T ′ denoting
{

1, T = T ′

0, T 6= T ′ ,

it holds that
(EΩ

T b˜M
T ,∇ψM′)T ′ +(divEΩ

T b˜M
T ,ψM′)T ′ = δMM′δT T ′ .

Denote, for M ∈Xh,

BM :=

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
, (2.6)

and
CM :=

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
. (2.7)

Then BM ⊂ CM . We present the structures of RTnc
h0 and RTnc

h in the lemma below.

Lemma 2 1. If M 6= N ∈Xh, CM ∩CN = {0};
2. RTnc

h0 =
⊕

M∈Xh

BM;

3. RTnc
h =

 ⊕
M∈X b

h

CM

⊕
 ⊕

M∈X i
h

BM

 .
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Proof The first item follows directly by definition. For the second, by (2.3) and Lemma 1,

RTnc
h0 =

τ˜h ∈
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh


=
⊕

M∈Xh

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th,∂T3M
(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
,

and the second item follows. For the third,

RTnc
h =

τ˜h ∈
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh0


=

τ˜h ∈
⊕

M∈X i
h

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh0


⊕τ˜h ∈

⊕
M∈X b

h

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
=

 ⊕
M∈X i

h

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
⊕ ⊕

M∈X b
h

⊕
∂T3M

span
{

EΩ
T b˜M

T

} .
The third item follows. This completes the proof. �

2.1.3. Profiles of BM and CM
Lemma 3 Given a vertex M that is shared by m triangles, dim(BM) = m−1. A minimal support for
a function in BM is a combination of two cells.

Proof The support of ψM consists of m triangles. Denote by Ti, 1 6 i 6 m, the m triangles that share

M. The basis functions in BM then take the form
m

∑
i=1

γib˜M
Ti

, satisfying

m

∑
i=1

[
(γib˜M

Ti
,∇(ψM|Ti))Ti +(γidivb˜M

Ti
,ψM|Ti)Ti

]
= 0. (2.8)

By (2.5), this equation admits (m−1) linearly independent solutions, and every corresponding function
can be supported on two cells. Particularly, we assign the two cells to be adjacent. Figure 2 illustrates
the profile of a basis function.
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FIG. 2. Profile of a global basis functions in BM , supported on two adjacent cells.

The function as illustrated in Figure 2, denoted by τ˜, is

τ˜= b˜M
TL

on TL, τ˜=−b˜M
TR

on TR, and τ˜= 0, elsewhere.

By (2.5), on TL, (τ˜,∇ψM)TL + (divτ˜,ψM)TL = 1, (τ˜,∇ψL)TL + (divτ˜,ψL)TL = 0, and (τ˜,∇ψN)TL +
(divτ˜,ψN)TL = 0; on TR, (τ˜,∇ψM)TR + (divτ˜,ψM)TR = −1, (τ˜,∇ψR)TR + (divτ˜,ψR)TR = 0, and
(τ˜,∇ψN)TR + (divτ˜,ψN)TR = 0. Then τ˜ satisfies (2.8). As τ˜ vanishes on other cells, we can obtain

∑
T∈Th

(τ˜,∇ψ)T +(divτ˜,ψ)T = 0 for all ψ ∈ V1
h, thus τ˜ ∈ RTnc

h0.

According to the profile of Figure 2, a set of linearly independent basis functions of BM can be
given in Figure 3, where M is an interior vertex, and in Figure 4, where M is a boundary vertex. This
completes the proof. �

Lemma 4 Given a vertex A that is shared by m triangles, dim(CA) = m. A minimal support for a
function in CA is one cell.

The proof of Lemma 4 is straightforward. We refer to Figure 5 for an illustration.

Remark 5 For RTnc
h0, the total amount of the locally supported basis functions is

∑
M∈Xh

[#{T ∈Th : ∂T 3M}−1] = 3# [T ∈Th]−# [M ∈Xh] = dim(RTnc
h0).

For RTnc
h , the total amount of the locally supported basis functions is

∑
M∈X b

h

[#{T ∈Th : ∂T 3M}]+ ∑
M∈X i

h

[#{T ∈Th : ∂T 3M}−1]

= 3# [T ∈Th]−#
[
M ∈X i

h
]
= dim(RTnc

h ).
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FIG. 3. Profiles of linearly independent basis functions of BM , M ∈X i
h .

In any case, T is covered by the supports of no more than m̃+ 6 basis functions, where m̃ is the
number of cells that has at least one vertex in common with T . The generation of a local stiffness
matrix is a local operation, and the assembling of global stiffness matrices can be done by following
the standard routine for finite elements of Ciarlet-type.

Based on the specific profiles of the basis functions, we conclude this subsection by rephrasing
Lemma 2 as the theorem below.

Theorem 6 The space RTnc
h0 admits a set of linear independent basis functions, which are belonging

to
⊕

M∈Xh
BM and each supported on two adjacent triangles.

The space RTnc
h admits a set of linear independent basis functions; they consist of two types of

functions, Type I and Type II. The functions of Type I are belonging to
⊕

M∈X i
h
BM and each supported
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FIG. 4. Illustration of global basis functions of RTnc
h0 based on a boundary vertex M

FIG. 5. The local basis functions associated with a boundary vertex M can work as global basis functions of RTnc
h .

on two adjacent triangles, and the functions of Type II are belonging to
⊕

M∈X b
h

CM and each supported
on one triangle.

2.2. Approximation and stability

2.2.1. Locally-defined projective interpolator for H(div)
Given a triangle T , define the cell-wise interpolator

IRT
T : H(div,T )→ RT(T ) (2.9)

such that
(IRT

T τ˜,∇v)T +(divIRT
T τ˜,v)T = (τ˜,∇v)T +(divτ˜,v)T , ∀v ∈ P1(T ). (2.10)

By (2.5), IRT
T τ˜=

3

∑
i=1

[
(τ˜,∇λi)T +(divτ˜,λi)T

]
b˜ai

T , and IRT
T σ˜ = σ˜ for σ˜ ∈ RT(T ).

Remark 7 The Crouzeix-Raviart element interpolator ICR
T : H1(T ) → P1(T ), defined such that∫

e ICR
T v =

∫
e v, satisfies the condition (ICR

T v,divτ˜)T +(∇ICR
T v,τ˜)T = (v,divτ˜)T +(∇v,τ˜)T , ∀τ˜∈RT(T ).

On the triangulation Th, define the global interpolator by

IRT
h :

⊕
T∈Th

EΩ
T H(div,T )→ RT(Th), (IRT

h τ˜h)T = IRT
T (τ˜h|T ), ∀T ∈Th. (2.11)

Lemma 8 R(IRT
h ,H(div,Ω))⊂ RTnc

h and R(IRT
h ,H0(div,Ω))⊂ RTnc

h0.



12 SHUO ZHANG

Proof Given σ˜ ∈ H(div,Ω), (σ˜,∇vh) + (divσ˜,vh) = 0 for any vh ∈ V1
h0. Thus for any vh ∈ V1

h0,

∑
T∈Th

(∇vh,IRT
h σ˜)T + (vh,divIRT

h σ˜)T = ∑
T∈Th

(∇vh,σ˜)T + (vh,divσ˜)T = 0. Namely IRT
h σ˜ ∈ RTnc

h , and

thus R(IRT
h ,H(div,Ω))⊂ RTnc

h . Similarly R(IRT
h ,H0(div,Ω))⊂ RTnc

h0. This completes the proof. �

Remark 9 Different from most existing interpolators, IRT
h σ˜ is not defined in the form of ∑ li(σ˜)τ˜i,

where τ˜i is each a global basis function of RTnc
h , and li is each a functional on σ˜ . Indeed, according

to theory of [42], as the global basis functions of RTnc
h may not be locally linearly independent,

interpolator defined as ∑ li(σ˜)τ˜i with li depends on the local information of σ˜ cannot be projective.

2.2.2. Approximation and stability
Lemma 10 With a constant C depending on the shape regularity of T ,

1. stabilities:
‖divIRT

T σ˜‖0,T 6 ‖divσ˜‖0,T , and ‖IRT
T σ˜‖div,T 6C‖σ˜‖div,T ;

2. optimal approximation:

‖div(σ˜− IRT
T σ˜)‖0,T = inf

τ˜∈RT(T )‖div(σ˜−τ˜)‖0,T , and ‖σ˜− IRT
T σ˜‖div,T 6C inf

τ˜∈RT(T )‖σ˜−τ˜‖div,T .

Proof Evidently, divIRT
T σ˜ is the L2(T ) projection of divσ˜ onto piecewise constant space; therefore,

‖divIRT
T σ˜‖0,T 6 ‖divσ˜‖0,Ω. Now we use P0

T for the L2(T ) projection to constant, and P˜0
T :=

(P0
T )

2. Then for any τ˜ ∈ RT(T ), we have by Poincaré inequality, ‖τ˜− P˜0
T τ˜‖0,T 6 ChT‖∇τ˜‖0,T =

ChT/
√

2‖divτ˜‖0,T . Meanwhile, for any v ∈ P1(T ), ‖v−P0
T v‖0,T 6 ChT‖∇v‖0,T . For any v ∈ P1(T ),(

IRT
T σ˜,∇v

)
T +(divIRT

T σ˜,v)T =(σ˜,∇v)T +(divσ˜,v)T , and (divIRT
T σ˜,P0

T v)T =(divσ˜,P0
T v)T . Therefore,(

P˜0
T IRT

T σ˜,∇v
)

T = (σ˜,∇(v−P0
T v))T + (divσ˜,v−P0

T v)T . It follows that ‖P˜0
T IRT

T σ˜‖0,T 6 C(‖σ˜‖0,T +

hT‖divσ˜‖0,T ). Further ‖IRT
T σ˜‖0,T 6C(‖σ˜‖0,T +hT‖divσ˜‖0,T ), and ‖IRT

T σ˜‖div,T 6C‖σ˜‖div,T .
The optimal approximation follows then from the stability and by the standard procedure. �

Moreover, as the global interpolator is defined completely piecewise, global stabilities hold and

‖σ˜− IRT
h σ˜‖divh 6C inf

τ˜h∈RT(Th)
‖σ˜− τ˜h‖divh , (2.12)

where C depends on the regularity of the triangulation only.
Further, the Poincaré inequalities hold for RTnc

h and RTnc
h0.

Lemma 11 Given τ˜h ∈ RTnc
h , there is σ˜h ∈ RTnc

h , such that divhσ˜h = divhτ˜h, and ‖σ˜h‖0,Ω 6
C‖divhτ˜h‖0,Ω.

Proof Note that divhτ˜h is piecewise constant, and there exists a τ˜ ∈ H(div,Ω), such that divτ˜ =

divhτ˜h, and ‖τ˜‖div,Ω 6 C‖divτ˜‖0,Ω. Set σ˜h = IRT
h τ˜, then divhσ˜h = divτ˜, and ‖σ˜h‖divh 6 C‖τ˜‖div 6

C‖divhτ˜h‖0,Ω. This completes the proof. �
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Remark 12 Evidently, RTnc
h ⊃ V˜RT

h , and thus the approximation and stability properties of RTnc
h

follow. Though, we present direct proofs of them by the aid of the interpolator. In some sense, both the
two properties established here are optimal.

2.3. Discretization of the variational problems

2.3.1. Discretization of the H(div) elliptic problem
We consider the problem: given f˜ ∈ L˜2(Ω), find σ˜ ∈ H(div,Ω), such that

(divσ˜,divτ˜)+(σ˜,τ˜) = ( f˜,τ˜), ∀τ˜ ∈ H(div,Ω). (2.13)

It follows that divσ˜ ∈ H1
0 (Ω), and f˜=−∇divσ˜+σ˜ .

We here consider the discretization of (2.13): to find σ˜h ∈ RTnc
h , such that

(divhσ˜h,divhτ˜h)+(σ˜h,τ˜h) = ( f˜,τ˜h), ∀τ˜h ∈ RTnc
h . (2.14)

Immediately (2.13) and (2.14) are well-posed. Denote ‖τ˜h‖divh := (‖τ˜h‖2
0 +‖divhτ˜h‖2

0)
1/2.

Theorem 13 Let σ˜ and σ˜h be the solutions of (2.13) and (2.14), respectively. Then

‖σ˜−σ˜h‖divh 6 2 inf
τ˜h∈RTnc

h

‖σ˜− τ˜h‖divh + inf
vh∈V1

h0

‖divσ˜− vh‖1,Ω. (2.15)

Proof By Strang’s lemma (cf. [15]),

‖σ˜−σ˜h‖divh 6 2 inf
τ˜h∈RTnc

h

‖σ˜− τ˜h‖divh + sup
τ˜h∈RTnc

h

(divσ˜,divhτ˜h)+(∇divσ˜,τ˜h)

‖τ˜h‖divh

.

For any vh ∈ V1
h0,

(divσ˜,divhτ˜h)+(∇divσ˜,τ˜h) = (divσ˜− vh,divhτ˜h)+(∇(divσ˜− vh),τ˜h)6 ‖divσ˜− vh‖1,Ω‖τ˜h‖divh .

Then (2.15) follows. �

By the abstract estimation, the precise convergence order can be figured out with respect to the
assumption on the regularity of the solution.

2.3.2. Discretization of the Darcy problem
We consider the problem: given f ∈ L2(Ω), find (u,σ˜) ∈ L2(Ω)×H(div,Ω), such that{

(σ˜,τ˜) +(u,divτ˜) = 0 ∀τ˜ ∈ H(div,Ω),
(divσ˜,v) = ( f ,v) ∀v ∈ L2(Ω).

(2.16)

The discretization is to find (uh,σ˜h) ∈P0(Th)×RTnc
h , such that{

(σ˜h,τ˜h) +(uh,divhτ˜h) = 0 ∀τ˜h ∈ RTnc
h ,

(divhσ˜h,vh) = ( f ,vh) ∀vh ∈P0(Th).
(2.17)

Here P0(Th) is the space of piecewise constant functions. Evidently, (2.17) is well-posed.



14 SHUO ZHANG

Theorem 14 Let (u,σ˜) and (uh,σ˜h) be the solutions of (2.16) and (2.17), respectively. Then

‖u−uh‖0,Ω +‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ inf
sh∈V1

h0

‖u− sh‖1,Ω

 .
Proof By the Strang lemma for saddle point problem (cf., e.g., [9, Proposition5.5.6]),

‖u−uh‖0,Ω+‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ sup
τ˜h∈RTnc

h

(σ˜,τ˜h)+(u,divhτ˜h)

‖τ˜h‖divh

 .
Note that σ˜ = ∇u, and we have, for any sh ∈ V1

h0,

(σ˜,τ˜h)+(u,divhτ˜h) = (∇u−∇sh,τ˜h)+(u− sh,divhτ˜h)6 ‖u− sh‖1,Ω‖τ˜h‖divh .

It follows then

‖u−uh‖0,Ω +‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ inf
sh∈V1

h0

‖u− sh‖1,Ω

 .
This completes the proof. �

2.4. Numerical experiments

We show the implementability of RTnc
h and its difference from the classical Raviart-Thomas element

by two series of experiments.

2.4.1. Implementability of the space RTnc
h

Firstly, we use RTnc
h to solve numerically the boundary value problems (2.13) and (2.16). We use the

unit square (0,1)2 as the computation domain, and we choose properly the source terms, such that

• for (2.13), the exact solution is

σ˜ = (−2cos(πx)sin(πy),sin(πx)cos(πy))>;

• for (2.16), the exact solution is

u = sin(πx)sin(πy), and σ˜ = ∇u.

We construct two series of triangulations, being crisscross (cf. Figure 6, left) and irregular (cf. Figure
6, right), respectively. The computational results are recorded in Figures 7 and 8.

On the two series of triangulations, we also use RTnc
h ×P0(Th) to solve the eigenvalue problem of

(2.16), which is to find (λ ,u,σ˜) ∈ R×L2(Ω)×H(div,Ω), such that{
(σ˜,τ˜) +(u,divτ˜) = 0 ∀τ˜ ∈ H(div,Ω),
(divσ˜,v) = λ π2 (u,v) ∀v ∈ L2(Ω).

(2.18)

Note that on unit square, the eigenvalues of (2.18) take the values m2+n2, m,n ∈N+. Here we separate
the effect of π2 so that the results are easy to read. The respective eigenvalue problems of (2.13) and
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FIG. 6. The initial triangulation of two series of triangulations. Left: crisscross; right: irregular.

FIG. 7. Convergence process for (2.13). Left: on crisscross triangulations; right: on irregular triangulations.

(2.16) are essentially equivalent to each other. The 10 smallest computed eigenvalues of (2.18) on each
series of grids are recorded in Tables 1 and 2. In the tables, we use “L” to denote the level of each grid,
and use ↘/↗ to denote the decreasing/increasing trend of the computed eigenvalues as the grids are
refined and refined. The computed eigenvalues converge to the exact eigenvalues nicely. Moreover, it
can be seen that the RTnc

h scheme for (2.18) provides upper bounds to the exact eigenvalues.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.619 9.727 9.727 9.727 19.123 29.181 29.181 29.181 29.181 29.181
2 2.128 5.982 5.982 10.477 14.547 14.547 20.650 20.650 32.039 38.907
3 2.031 5.223 5.223 8.511 11.009 11.009 14.480 14.480 20.137 20.137
4 2.008 5.055 5.055 8.122 10.242 10.242 13.345 13.345 17.739 17.739
5 2.002 5.014 5.014 8.030 10.060 10.060 13.085 13.085 17.182 17.182

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 1 Computed eigenvalues by RTnc
h scheme on crisscross grids.
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FIG. 8. Convergence process for (2.16). Left: on crisscross triangulations; right: on irregular triangulations.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.474 6.921 7.575 12.150 17.167 20.663 21.687 23.653 25.825 26.359
2 2.123 5.636 5.770 9.850 12.660 13.141 18.222 18.582 24.122 25.578
3 2.031 5.164 5.199 8.474 10.712 10.778 14.307 14.357 18.985 19.218
4 2.008 5.041 5.050 8.119 10.182 10.195 13.325 13.336 17.520 17.565
5 2.002 5.010 5.013 8.030 10.046 10.049 13.081 13.084 17.132 17.142

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 2 Computed eigenvalues by RTnc
h scheme on irregular grids.

2.4.2. Comparison with the classical Raviart-Thomas element

FIG. 9. The initial triangulations. Left: regular; middle: fish bone; right: union Jack.

We here show the experiments of solving the eigenvalue problem (2.18) with the classical Raviart-
Thomas element scheme on the crisscross triangulation, the regular triangulation (cf. Figure 9, left),
the fish-bone triangulation (cf. Figure 9, middle), and the union Jack triangulation (cf. Figure 9, right).
The 10 smallest computed eigenvalues on each series of grids are recorded in Tables 3, 4, 5 and 6. It
can be seen that the classical (lowest-degree) Raviart-Thomas element might provide upper or lower
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bound to different eigenvalues, sensitive to the grid as well.2 Numerical experiments on these special
triangulations which are easy to check are included.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 1.858 4.158 4.158 8.254 9.727 12.042 12.042 12.733 14.590 14.590
2 1.965 4.893 4.893 7.431 9.850 9.850 11.731 11.731 14.847 15.317
3 1.991 4.975 4.975 7.862 9.986 9.986 12.712 12.712 17.071 17.071
4 1.998 4.994 4.994 7.966 9.998 9.998 12.929 12.929 17.024 17.024
5 1.999 4.998 4.998 7.991 9.999 9.999 12.982 12.982 17.006 17.006

↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↘ ↘

TABLE 3 Computed eigenvalues by the classical Raviart-Thomas
element scheme on crisscross grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.110 3.542 4.863 9.727 9.727 12.021 13.453 14.590 — —
2 2.032 4.834 5.096 8.077 8.957 9.414 11.107 11.377 12.242 14.729
3 2.008 4.964 5.026 8.119 9.798 9.815 12.896 13.422 16.153 16.196
4 2.002 4.991 5.007 8.033 9.951 9.952 12.983 13.113 16.791 16.799
5 2.001 4.998 5.002 8.009 9.988 9.988 12.996 13.029 16.947 16.950

↘ ↗ ↘ ↘ ↗ ↗ ↗ ↘ ↗ ↗

TABLE 4 Computed eigenvalues by the classical Raviart-Thomas
element scheme on regular grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.084 4.127 4.127 9.727 9.727 12.895 12.895 14.590 — —
2 2.032 4.943 4.959 8.337 8.881 8.989 11.359 11.501 12.716 13.188
3 2.008 4.993 4.995 8.126 9.788 9.800 13.153 13.166 16.107 16.159
4 2.002 4.999 4.999 8.034 9.950 9.951 13.047 13.048 16.790 16.794
5 2.001 5.000 5.000 8.009 9.988 9.988 13.012 13.012 16.948 16.948

↘ ↗ ↗ ↘ ↗ ↗ ↘ ↘ ↗ ↗

TABLE 5 Computed eigenvalues by the classical Raviart-Thomas
element scheme on fish-bone grids.

The RTnc
h scheme for (2.18) is further carried out on the regular triangulation, fish-bone

triangulation and the union Jack triangulation, and the 10 smallest computed eigenvalues on each series
of grids are recorded in Tables 7, 8 and 9. It can be seen that, in all these experiments, again, the RTnc

h
scheme for (2.18) provides upper bounds for all the eigenvalues. The robustness is improved with RTnc

h .
This will be further investigated in future.

2 We do not think it is now found for the first time that the classical (lowest-degree) Raviart-Thomas element scheme cannot be
expected to provide a certain bounds to the exact eigenvalues, though we do not find a referred literature.
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L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.432 4.127 4.127 7.295 9.727 12.895 12.895 14.590 — —
2 2.030 4.925 4.925 8.315 9.727 9.727 11.501 11.501 13.497 13.497
3 2.008 4.993 4.993 8.120 9.786 9.786 13.133 13.133 16.097 16.097
4 2.002 4.999 4.999 8.033 9.950 9.950 13.047 13.047 16.789 16.789
5 2.001 5.000 5.000 8.009 9.988 9.988 13.012 13.012 16.948 16.948

↘ ↗ ↗ ↘ ↗ ↗ ↘ ↘ ↗ ↗

TABLE 6 Computed eigenvalues by the classical Raviart-Thomas
element scheme on union Jack grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 3.648 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.396 6.748 8.210 13.339 19.454 21.970 23.399 33.381 36.189 58.361
3 2.095 5.414 5.692 9.432 12.082 12.343 15.678 18.242 23.299 23.656
4 2.024 5.102 5.166 8.372 10.494 10.510 13.684 14.246 18.387 18.430
5 2.006 5.026 5.041 8.094 10.122 10.123 13.173 13.306 17.335 17.344

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 7 Computed eigenvalues by RTnc
h scheme on regular grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 3.648 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.395 7.247 7.455 14.590 17.639 20.437 26.875 32.313 36.332 58.361
3 2.095 5.537 5.552 9.559 11.969 12.131 16.941 17.131 22.453 23.322
4 2.024 5.133 5.134 8.380 10.485 10.497 13.960 13.973 18.334 18.398
5 2.006 5.033 5.033 8.094 10.121 10.122 13.239 13.240 17.334 17.339

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 8 Computed eigenvalues by RTnc
h scheme on fish-bone grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.918 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.366 7.274 7.274 11.672 19.454 19.454 29.531 29.531 43.615 58.361
3 2.087 5.505 5.505 9.466 11.963 11.963 16.852 16.852 22.973 22.973
4 2.022 5.121 5.121 8.349 10.447 10.447 13.893 13.893 18.258 18.258
5 2.005 5.030 5.030 8.086 10.109 10.109 13.218 13.218 17.301 17.301

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 9 Computed eigenvalues by RTnc
h scheme on union Jack grids.

3. Nonconforming finite element exterior calculus

3.1. Nonconforming finite element spaces for HΛk in Rn

Let Gh be a simplicial subdivision of Ω. For 06 k 6 n−1, we define finite element spaces for HΛk by

Wnc
h Λ

k :=
{

ωh ∈P−
1 Λ

k(Gh) : 〈ωh,δ k+1ηh〉L2Λk −〈dk
hωh,ηh〉L2Λk+1 = 0, ∀ηh ∈W∗

h0Λ
k+1
}
, (3.1)
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and, for H0Λk,

Wnc
h0Λ

k :=
{

ωh ∈P−
1 Λ

k(Gh) : 〈ωh,δ k+1ηh〉L2Λk −〈dk
hωh,ηh〉L2Λk+1 = 0, ∀ηh ∈W∗

hΛ
k+1
}
. (3.2)

Set
Wnc

h Λ
n := P0Λ

n(Gh), and Wnc
h0Λ

n := Wnc
h Λ

n∩L2
0Λ

n(Ω). (3.3)

Remark 15 Note that Wnc
h Λ0 and Wnc

h0Λ0 are the lowest-degree Crouzeix-Raviart element spaces. If
further n = 1, Wnc

h Λ0 and Wnc
h0Λ0 coincide with the respective continuous linear element spaces.

Remark 16 Associated with the definitions, by (1.3), it holds that, for example,

W∗
hΛ

k =
{

µh ∈P∗,−
1 Λ

k(Gh) : 〈δ kµh,τh〉L2Λk−1 −〈µh,dk−1
h τh〉L2Λk = 0, ∀τh ∈Wnc

h0Λ
k−1
}
.

By the same virtue of Theorem 6, noting (1.3), we can prove theorem below.

Theorem 17 The space Wnc
h0Λk admits a set of linear independent basis functions, which are each

supported on two adjacent simplices.
The space Wnc

h Λk admits a set of linear independent basis functions; they consist of two types of
functions, Type I and Type II. The functions of Type I are each supported on two adjacent simplices, and
the functions of Type II are each supported on one simplex.

In the sequel, we use F G for a family of shape regular subdivisions of Ω.

3.1.1. Locally defined interpolator and optimal approximation
Similar to (2.9), we define a local interpolator Idk

T : HΛk(T )→P−
1 Λk(T ), 06 k 6 n−1, such that,

〈Idk

T ω,δ k+1η〉L2Λk(T )−〈d
kIdk

T ω,η〉L2Λk+1(T ) = 〈ω,δ k+1η〉L2Λk(T )−〈d
k
ω,η〉L2Λk+1(T ),

for any η ∈P∗,−
1 Λk+1(T ), and, following (2.11), define a global interpolator

Idk

h :
⊕

T∈Gh

EΩ
T HΛ

k(T )→P−
1 Λ

k(Gh), by (Idk

h ω)|T = Idk

T (ω|T ), ∀T ∈ Gh.

Set Idn

T the L2(T ) projection to P0Λn on T , and Idn

h the L2(Ω) projection to P0Λn(Gh).
Denote ‖µh‖dk

h
:= (‖dk

hµh‖2
L2Λk+1 +‖µh‖2

L2Λk)
1/2. The proofs of the two lemmas below are the same

as that of Lemma 8 and Lemma 10, and are omitted here.

Lemma 18 R(Idk

h ,HΛk)⊂Wnc
h Λk and R(Idk

h ,H0Λk)⊂Wnc
h0Λk.

Lemma 19 With Ck,n uniform for F G , for Gh ∈F G and ω ∈
⊕

T∈Gh

EΩ
T HΛ

k(T ),

‖ω− Idk

h ω‖dk
h
6Ck,n inf

ηh∈P−1 Λk(Gh)
‖ω−ηh‖dk

h
.



20 SHUO ZHANG

3.1.2. Uniform discrete Poincaré inequalities
As generally R(dk

h,W
nc
h Λk) 6⊂ HΛk+1(Ω), we cannot simply repeat the proof of Lemma 11. We adopt

an indirect approach, which can be viewed a finite-dimensional analogue of the closed range theorem.
Let X andY be two Hilbert spaces. For (T,D) : X→Y a closed operator, denote

DyT := {v ∈ D : 〈v,w〉X = 0, ∀w ∈N (T,D)} .

Define the Poincaré inequality’s criterion of (T,D) as

pic(T,D) :=

 sup
06=v∈DyT

‖v‖X

‖Tv‖Y
, if DyT 6= {0} ;

0, if DyT = {0} .
(3.4)

If pic(T,D) is finite, then the Poincaré inequality holds for (T,D). It is further indeed the best
constant of the Poincaré inequality. The index can be used for a criterion for closed range. We refer to,
e.g., [4, Lemma 3.6] for a proof of Lemma 20 up to little technical modification.

Lemma 20 For (T,D) : X→Y a closed operator, R(T,D) is closed if and only if pic(T,D)<+∞.

The main estimation is the theorem below.

Theorem 21 With a constant Ck,n uniform for F G ,

pic(dk
h,W

nc
h Λ

k)6Ck,n.

We firstly present three lemmas below, and postpone their technical proofs to appendix Section A.

Lemma 22 pic(dk
h,W

nc
h Λk)6 pic(δ k+1,W∗

h0Λk+1)+2pic(dk
h,P

−
1 Λk(Gh)).

Lemma 23 pic(dk
h,P

−
1 Λk(Gh)) = O(h).

Lemma 24
∣∣pic(δ k+1,W∗

h0Λk+1)−pic(dk
h,W

nc
h Λk)

∣∣= O(h).

Proof of Theorem 21 It is well known that (c.f., e.g., [6]), there exists a constant Ck,n such that
pic(dk,WhΛk)6Ck,n, and, pic(dk,Wh0Λk)6Ck,n, which implies immediately that pic(δ k+1,W∗

h0Λk+1)
and pic(δ k+1,W∗

hΛk+1) are uniformly bounded. It follows then pic(dk
h,W

nc
h Λk)6Ck,n. �

Similarly, pic(dk
h0,W

nc
h Λk)6Ck,n.

3.2. Discrete Helmholtz-Hodge decompositions of P0Λk(Gh)

Theorem 25 (Discrete Helmholtz decomposition) Orthogonal in L2Λk(Ω), for 16 k 6 n,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k) = R(dk−1
h ,Wnc

h0Λ
k−1)⊕⊥N (δ k,W∗

hΛ
k);

for 06 k 6 n−1,

P0Λ
k(Gh) = N (dk

h,W
nc
h Λ

k)⊕⊥R(δ k+1,W∗
h0Λ

k+1) = N (dk
h,W

nc
h0Λ

k)⊕⊥R(δ k+1,W∗
hΛ

k+1).
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Proof We are going to show, for 16 k 6 n,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k),

and other assertions follow the same way.
By construction, P0Λk(Gh) contains R(dk−1

h ,Wnc
h Λk−1)⊕⊥N (δ k,W∗

h0Λk). Conversely, let σh ∈
P0Λk(Gh)	⊥R(dk−1

h ,Wnc
h Λk−1). Then for any µh ∈Wnc

h Λk−1,

∑
T∈Gh

〈σh,dk−1
µh〉L2Λk(T )+ 〈δ kσh,µh〉L2Λk−1(T ) = 〈σh,dk−1

h µh〉L2Λk = 0.

Namely σh ∈W∗
h0Λk and further σh ∈N (δ k,W∗

h0Λk). This completes the proof. �

By noting that, for 16 k 6 n−1,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k) = N (dk
h,W

nc
h Λ

k)⊕⊥R(δ k+1,W∗
h0Λ

k+1),

we have immediately that, for 16 k 6 n−1,

R(dk−1
h ,Wnc

h Λ
k−1)⊂N (dk

h,W
nc
h Λ

k)⇐⇒R(δ k+1,W∗
h0Λ

k+1)⊂N (δ k,W∗
h0Λ

k). (3.5)

Further, we can construct the discrete Poincaré-Lefschetz duality identities below.

Theorem 26 (Discrete Poincaré-Lefschetz duality) For 16 k 6 n−1,

N (dk
h,W

nc
h Λ

k)	⊥R(dk−1
h ,Wnc

h Λ
k−1) = N (δ k,W∗

h0Λ
k)	⊥R(δ k+1,W∗

h0Λ
k+1)

and
N (dk

h,W
nc
h0Λ

k)	⊥R(dk−1
h ,Wnc

h0Λ
k−1) = N (δ k,W∗

hΛ
k)	⊥R(δ k+1,W∗

hΛ
k+1).

Denote Hnc
h Λk := N (dk

h,W
nc
h Λk) 	⊥ R(dk−1

h ,Wnc
h Λk−1) and Hnc

h0Λk := N (dk
h,W

nc
h0Λk) 	⊥

R(dk−1
h ,Wnc

h0Λk−1). We have the discrete orthogonal decomposition of P0Λk(Gh) below.

Theorem 27 (Discrete Hodge decomposition) For 16 k 6 n−1,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥H∗h0Λ
k(=Hnc

h Λ
k)⊕⊥R(δ k+1,W∗

h0Λ
k+1)

= R(dk−1
h ,Wnc

h0Λ
k−1)⊕⊥Hnc

h0Λ
k(=H∗hΛ

k)⊕⊥R(δ k+1,W∗
hΛ

k+1). (3.6)

Remark 28 Existing discrete Hodge decompositions in literature are of discretized spaces of HΛk;
see [4, (5.6)] for example. Contrastly, Theorem 27 is of a discretization of L2Λk.

3.3. Commutative diagrams

Lemma 29 For any µ ∈ HΛk(T ), 06 k 6 n−1, Idk+1

T dkµ = dkIdk

T µ .
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Proof Since dk+1dkµ = 0, dk+1Idk+1

T dkµ = 0. Further, Idk+1

T dkµ ∈P0Λk+1. Then,

〈Idk+1

T dk
µ,δ k+2η〉L2Λk+1(T )−〈d

k+1Idk+1

T dk
µ,η〉L2Λk+2(T )

= 〈dk
µ,δ k+2η〉L2Λk+1(T )−〈d

k+1dk
µ,η〉L2Λk+2(T ) = 〈d

k
µ,δ k+2η〉L2Λk+1(T )−〈µ,δ k+1δ k+2η〉L2Λk(T )

= 〈dkIdk

T µ,δ k+2η〉L2Λk+1(T )−〈I
dk

T µ,δ k+1δ k+2η〉L2Λk(T ), ∀η ∈P∗,−
1 Λ

k+2(T ).

Here we use underline to label the vanishing terms. Therefore, Idk+1

T dkµ = dkIdk

T µ . �

Immediately we have, for any µ ∈ HΛk(Ω), Idk+1

h dkµ = dk
hI

dk

h µ , 06 k 6 n−1.
We summarize all above to theorem below.

Theorem 30 The following de Rham complexes commute:

R inc−→ HΛ0 d0
−→ HΛ1 d1

−→ ...
dn−1
−−→ HΛn

↓ Id0

h ↓ Id1

h ↓ Idn

h

R inc−→ Wnc
h Λ0 d0

h−→ Wnc
h Λ1 d1

h−→ ...
dn−1

h−−→ Wnc
h Λn

; (3.7)

0 −→ H0Λ0 d0
−→ H0Λ1 d1

−→ ...
dn−1
−−→ H0Λn

↓ Id0

h ↓ Id1

h ↓ Idn

h

0 −→ Wnc
h0Λ0 d0

h−→ Wnc
h0Λ1 d1

h−→ ...
dn−1

h−−→ Wnc
h0Λn

. (3.8)

Remark 31 Given Theorem 26 the discrete Poincaré-Lefschetz duality, we are actually led to that,
once one of the four complexes in (3.7) and (3.8) is exact, so are the three others.

3.4. Finite element schemes for elliptic variational problems

Consider the elliptic variational problem: given f ∈ L2Λk, find ω ∈ HΛk, such that

〈dk
ω,dk

µ〉L2Λk+1 + 〈ω,µ〉L2Λk = 〈f,µ〉L2Λk , ∀µ ∈ L2
Λ

k. (3.9)

It follows that dkω ∈ H∗0 Λk+1, and δ k+1dkω +ω = f.
We consider its finite element discretization: find ω ∈Wnc

h Λk, such that

〈dk
hωh,dk

hµh〉L2Λk+1 + 〈ωh,µh〉L2Λk = 〈f,µh〉L2Λk , ∀µh ∈Wnc
h Λ

k. (3.10)

Immediately (3.9) and (3.10) are well-posed.

Theorem 32 Let ω and ωh be the solutions of (3.9) and (3.10), respectively.

‖ω−ωh‖dk
h
6 2 inf

µh∈Wnc
h

‖ω−µh‖dk
h
+ inf

τh∈W∗h0Λk+1
‖dk

ω− τh‖δ k+1
.

The proof is the same as that of Theorem 13, and is omitted here.
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4. Discretization of the Hodge Laplace problem with nonconforming spaces for HΛk

In this section, we study the discretizations of the Hodge Laplace problem: given f ∈ L2Λk, with Pk
H the

L2 projection to HΛk, find ω ∈ HΛk(Ω)∩H∗0 Λk(Ω) with dkω ∈ H∗0 Λk+1(Ω), such that

ω ⊥HΛ
k(Ω), and δ k+1dk

ω +dk−1
δ kω = f−Pk

Hf. (4.1)

The primal weak formulation is: find ω ∈ HΛk ∩H∗0 Λk, such that{
〈ω,ς〉L2Λk = 0, ∀ς ∈HΛk,

〈dkω,dkµ〉L2Λk+1 + 〈δ kω,δ kµ〉L2Λk−1 = 〈f−Pk
Hf,µ〉L2Λk , ∀µ ∈ HΛk(Ω)∩H∗0 Λk(Ω).

(4.2)

A standard mixed formulation based on ω ∈ HΛk is generally used ([4]), which seeks (ωp,σp,ϑ p) ∈
HΛk×HΛk−1×HΛk, such that, for (µ,τ,ς) ∈ HΛk×HΛk−1×HΛk,

〈ωp,ς〉L2Λk = 0
〈σp,τ〉L2Λk+1 −〈ωp,dk−1τ〉L2Λk = 0

〈ϑ p,µ〉L2Λk +〈dk−1σp,µ〉L2Λk +〈dkωp,dkµ〉L2Λk−1 = 〈f,µ〉L2Λk

. (4.3)

In this section, we investigate the application of the nonconforming finite element spaces to the
discretizations of this classical formulation and to a new “completely” mixed formulation.

Remark 33 Here we call (4.3) “primal” mixed formulation, and use the supscript p to label that.
Actually, it is natural to set an auxiliary mixed formulation, which seeks (ωd,ζ d,ϑ d) ∈ H∗0 Λk×

H∗0 Λk+1×H∗0Λk, such that, for (µ,η ,ς) ∈ H∗0 Λk×H∗0 Λk+1×H∗0Λk,
〈ωd,ς〉L2Λk = 0

〈ζ d,η〉L2Λk+1 −〈ωd,δ k+1η〉L2Λk = 0
〈ϑ d,µ〉L2Λk +〈δ k+1ζ d,µ〉L2Λk +〈δ kωd,δ kµ〉L2Λk−1 = 〈f,µ〉L2Λk

. (4.4)

This can be viewed as a mixed formulation as the dual of (4.3).
Conforming finite elements have been used for discretization of (4.3); they are naturally used

for (4.4). For example, we can consider the discretization for (4.4): to find (ωd
h ,ζ

d
h ,ϑ

d
h ) ∈W∗

h0Λk×
W∗

h0Λk+1×H∗h0Λk, such that, for (µh,ηh,ςh) ∈W∗
h0Λk×W∗

h0Λk+1×H∗h0Λk,
〈ωd,ς〉L2Λk = 0

〈Pk+1
h ζ d

h ,P
k+1
h ηh〉L2Λk+1 −〈ωd

h ,δ k+1ηh〉L2Λk = 0
〈ϑ d

h ,µh〉L2Λk +〈δ k+1ζ d
h ,µh〉L2Λk +〈δ kωd

h ,δ kµh〉L2Λk−1 = 〈f,Pk
hµh〉L2Λk

. (4.5)

The well-posedness of (4.5) is the same as that of (4.8) below. The convergence analysis of (4.5)
can be done in a classical way; precisely, denote by (ω̄d

h , ζ̄
d
h , ϑ̄

d
h ) ∈W∗

h0Λk×W∗
h0Λk+1×H∗h0Λk and

(ω̃d
h , ζ̃

d
h , ϑ̃

d
h ) ∈W∗

h0Λk×W∗
h0Λk+1×H∗h0Λk the respective solutions of the auxiliary problems

〈ω̄d,ς〉L2Λk = 0
〈ζ̄ d

h ,ηh〉L2Λk+1 −〈ω̄d
h ,δ k+1ηh〉L2Λk = 0

〈ϑ̄ d
h ,µh〉L2Λk +〈δ k+1ζ̄ d

h ,µh〉L2Λk +〈δ kω̄d
h ,δ kµh〉L2Λk−1 = 〈Pk

hf,µh〉L2Λk

, (4.6)
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and 
〈ω̃d,ς〉L2Λk = 0

〈ζ̃ d
h ,ηh〉L2Λk+1 −〈ω̃d

h ,δ k+1ηh〉L2Λk = 0
〈ϑ̃ d

h ,µh〉L2Λk +〈δ k+1ζ̃ d
h ,µh〉L2Λk +〈δ kω̃d

h ,δ kµh〉L2Λk−1 = 〈f,µh〉L2Λk

. (4.7)

It follows by standard procedure that

‖(ωd
h ,ζ

d
h ,ϑ

d
h )− (ω̄d

h , ζ̄
d
h , ϑ̄

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Ch‖Pk

hf‖L2Λk 6Ch‖f‖L2Λk ,

and

‖(ω̄d
h , ζ̄

d
h , ϑ̄

d
h )− (ω̃d

h , ζ̃
d
h , ϑ̃

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Ch‖f‖L2Λk .

Meanwhile, the classical analysis (cf. [6, Theorem 7.10 and its proof]) holds as

‖(ωd,ζ d,ϑ d)− (ω̃d
h , ζ̃

d
h , ϑ̃

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Chs‖f‖L2Λk ,

if the domain Ω is s-regular. The convergence analysis of (4.5) then follows.

4.1. Nonconforming discretization of (4.3)

By the newly designed nonconforming finite element spaces, the discrete problem is: to find
(ωp

h ,σ
p
h ,ϑ

p
h ) ∈Wnc

h Λk×Wnc
h Λk−1×Hnc

h Λk, such that, for (µh,τh,ςh) ∈Wnc
h Λk×Wnc

h Λk−1×Hnc
h Λk,


〈ωp

h ,ςh〉L2Λk = 0
〈Pk−1

h σ
p
h ,P

k−1
h τh〉L2Λk+1 −〈ωp

h ,d
k−1
h τh〉L2Λk = 0

〈ϑ p
h ,µh〉L2Λk +〈dk−1

h σ
p
h ,µh〉L2Λk +〈dk

hω
p
h ,d

k
hµh〉L2Λk−1 = 〈f,Pk

hµh〉L2Λk

. (4.8)

To verify the well-posedness of (4.8), following [4, Section 4.2.2], writing Xh := Wnc
h Λk ×

Wnc
h Λk−1×Hnc

h Λk, with ‖(µh,τh,ςh)‖Xh := ‖µh‖dk
h
+‖τh‖dk−1

h
+‖ςh‖L2Λk , denoting on Xh×Xh

Bh((ωh,σh,ϑh),(µh,τh,ςh)) := 〈Pk−1
h σ

p
h ,P

k−1
h τh〉L2Λk+1 −〈ωp

h ,d
k−1
h τh〉L2Λk

−〈ϑ p
h ,µh〉L2Λk −〈dk−1

h σ
p
h ,µh〉L2Λk −〈dk

hω
p
h ,d

k
hµh〉L2Λk−1 −〈ωp

h ,ςh〉L2Λk , (4.9)

we show the uniform inf-sup condition that

inf
06=(ωh,σh,ϑh)∈Xh

sup
06=(µh,τh,ςh)∈Xh

Bh((ωh,σh,ϑh),(µh,τh,ςh))

‖(ωh,σh,ϑh)‖Xh‖(µh,τh,ςh)‖Xh

> γ > 0. (4.10)

Given (ωh,σh,ϑh) ∈ Xh, we can decompose orthogonally ωh = dk−1
h ρh + ω

H
h + ωyh , with ρh ∈

Wnc
h Λk−1, ω

H
h ∈ Hnc

h Λk, and ωyh orthogonal to N (dk
h,W

nc
h Λk), such that, by the discrete Poincaré

inequality (Theorem 21), ‖ρh‖dk−1
h
6 cP‖dk−1

h ρh‖L2Λk .
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Now, set τh = σh− 1
c2

P
ρh, µh =−ωh−dk−1

h σh−ϑh, and ςh =−ϑh +ω
H
h , then

‖(µh,τh,ςh)‖Xh 6C‖(ωh,σh,ϑh)‖Xh ,

and

Bh((ωh,σh,ϑh),(µh,τh,ςh)) = ‖Pk−1
h σh‖2

L2Λk−1 +‖dk−1
h σh‖2

L2Λk +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk −
1
c2

P
〈σh,ρh〉L2Λk−1 .

Note further that

〈σh,ρh〉L2Λk−1 6 ‖σh‖L2Λk−1‖ρh‖L2Λk−1

6
c2

P
2
‖σh‖2

L2Λk−1 +
1

2c2
P
‖ρh‖2

L2Λk−1 6
c2

P
2
‖σh‖2

L2Λk−1 +
1
2
‖dk−1

h ρh‖2
L2Λk

Thus

Bh((ωh,σh,ϑh),(µh,τh,ςh))> ‖Pk−1
h σh‖2

L2Λk−1 +‖dk−1
h σh‖2

L2Λk −
1
2
‖σh‖2

L2Λk−1 +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk

>
1
2
‖σh‖2

L2Λk−1 +(1−Ch2)‖dk−1
h σh‖2

L2Λk +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk .

Note that dk
hωyh = dk

hωh, and, by Theorem 21, ‖ωyh‖L2Λk 6C‖dk
hωh‖L2Λk+1 . It follows then

Bh((ωh,σh,ϑh),(µh,τh,ςh))>C‖(ωh,σh,ϑh)‖2
Xh
,

with C depending on the Poincaré inequality only. The inf-sup condition (4.10) is then proved and the
well-posedness of (4.8) is verified.

4.2. A novel mixed element scheme

It is natural to consider an approach where both dk and δ k are operated in a dual way, and we begin
with this “completely” mixed formulation: to find (ωc,ζ c,σ c,ϑ c) ∈ L2Λk×H∗0 Λk+1×HΛk−1×HΛk,
such that, for (µ,η ,τ,ς) ∈ L2Λk×H∗0 Λk+1×HΛk−1×HΛk,

〈ωc,ς〉L2Λk = 0
〈ζ c,η〉L2Λk+1 −〈ωc,δ k+1η〉L2Λk = 0

〈σ c,τ〉L2Λk−1 −〈ωc,dk−1τ〉L2Λk = 0
〈ϑ c,µ〉L2Λk +〈δ k+1ζ c,µ〉L2Λk +〈dk−1σ c,µ〉L2Λk = 〈f,µ〉L2Λk

.

(4.11)
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Lemma 34 For f ∈ L2Λk, the problem (4.11) admits a unique solution (ωc,ζ c,σ c,ϑ c), and

‖ωc‖L2Λk +‖ζ c‖δ k+1
+‖σ c‖dk−1 +‖ϑ c‖L2Λk 6C‖f‖L2Λk . (4.12)

Further, ζ c = dkωc, σ c = δ kωc, and ωc solves (4.2).

Proof For (4.12), we only have to verify Brezzi’s conditions, which hold by the orthogonal Hodge
decomposition

L2
Λ

k = R(dk−1,HΛ
k−1)⊕⊥HΛ

k⊕⊥R(δ k+1,H∗0 Λ
k+1),

together with the closeness of R(dk−1,HΛk−1) and R(δ k+1,H∗0 Λk+1). The remaining assertions are
straightforward. The proof is completed. �

A lowest-degree stable discretization of (4.11) is: find (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ) ∈P0Λk(Gh)×W∗

h0Λk+1×
Wnc

h Λk−1×Hnc
h Λk, such that, for (µh,ηh,τh,ςh) ∈P0Λk(Gh)×W∗

h0Λk+1×Wnc
h Λk−1×Hnc

h Λk,
〈ωc

h ,ςh〉L2Λk = 0
〈Pk+1

h ζ c
h ,P

k+1
h ηh〉L2Λk+1 −〈ωc

h ,δ k+1ηh〉L2Λk = 0
〈Pk−1

h σ c
h ,P

k−1
h τh〉L2Λk−1 −〈ωc

h ,d
k−1
h τh〉L2Λk = 0

〈ϑ c
h ,µh〉L2Λk +〈δ k+1ζ c

h ,µh〉L2Λk +〈dk−1
h σ c

h ,µh〉L2Λk = 〈f,µh〉L2Λk

.

(4.13)

Lemma 35 Given f ∈ L2Λk, the problem (4.13) admits a unique solution (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ), and

‖ωc
h‖L2Λk +‖ζ c

h‖δ k+1
+‖σ c

h‖dk−1
h

+‖ϑ c
h‖L2Λk 6C‖ f‖L2Λk .

The constant C depends on pic(δ k+1,W∗
h0Λk+1) and pic(dk−1

h ,Wnc
h Λk−1).

Again, for the well-posedness of (4.13), we only have to verify Brezzi’s conditions, which holds by
the discrete Hodge decomposition (3.6). The stable decompositions (3.6) comes true by the aid of the
nonconforming space Wnc

h Λk. Hence (4.13) is a new scheme hinted in nonconforming finite element
exterior calculus.

4.3. Equivalences among lowest-degree mixed element schemes

Lemma 36 Let (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ), (ω

p
h ,σ

p
h ,ϑ

p
h ) and (ωd

h ,ζ
d
h ,ϑ

d
h ) be the solutions of (4.13), (4.8) and

(4.5), respectively. Then

ϑ
d
h = ϑ

c
h , ζ

d
h = ζ

c
h , Pk

hω
d
h = ω

c
h , δ kω

d
h = Pk−1

h σ
c
h , δ k+1ζ

d
h = Pk

hf−dk−1
h σ

c
h −ϑ

c
h , (4.14)

ϑ
p
h = ϑ

c
h , σ

p
h = σ

c
h , Pk

hω
p
h = ω

c
h , dk

hω
p
h = Pk+1

h ζ
c
h , dk−1

h σ
p
h = Pk

hf−δ k+1ζ
c
h −ϑ

c
h , (4.15)

ϑ
d
h = ϑ

p
h , Pk+1

h ζ
d
h = dk

hω
p
h , Pk

hω
d
h = Pk

hω
p
h , δ kω

d
h = Pk−1

h σ
p
h , δ k+1ζ

d
h +dk−1

h σ
p
h = Pk

hf−ϑ
c
h . (4.16)
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Proof Let (ωd
h ,ζ

d
h ,ϑ

d
h ) be the solution of (4.5). Then, with a σh ∈Wnc

h Λk−1,

〈ϑ d
h ,µh〉L2Λk + 〈δ k+1ζ

d
h ,µh〉L2Λk + 〈δ kω

d
h ,δ kµh〉L2Λk−1

+ 〈dk−1
h σh,µh〉L2Λk −〈σh,δ kµh〉L2Λk−1 = 〈f,Pk

hµh〉L2Λk ,

for any µh ∈P∗,−
1 Λk(Gh). Choosing arbitrarily µh ∈P0Λk(Gh), we have

ϑ
d
h +δ k+1ζ

d
h +dk−1

h σh = Pk
hf, (4.17)

and
〈δ kω

d
h ,δ kµh〉L2Λk−1 −〈σh,δ kµh〉L2Λk−1 = 0, ∀µh ∈P∗,−

1 Λ
k(Gh),

which leads to that δ kωd
h = Pk−1

h σh. Further, noting that 〈δ kωd
h ,τh〉L2Λk−1 = 〈ωd

h ,d
k
hτh〉L2Λk for τh ∈

Wnc
h Λk−1, we obtain 〈Pk−1

h σh,Pk−1
h τd

h 〉L2Λk−1 −〈ωd
h ,d

k−1
h τh〉L2Λk = 0 for τh ∈Wnc

h Λk−1.
In all, (Pk

hωd
h ,ζ

d
h ,σh,ϑ

d
h ) ∈P0Λk(Gh)×W∗

h0Λk+1×Wnc
h Λk−1×Hnc

h Λk satisfies the system (4.13),
and thus (Pk

hωd
h ,ζ

d
h ,σh,ϑ

d
h ) = (ωc

h ,ζ
c
h ,σ

c
h ,ϑ

c
h ). This proves (4.14). Similarly can (4.15) be proved, and

(4.16) follows by (4.14) and (4.15). The proof is completed. �

The convergence analysis of (4.13) and (4.8) follow directly by Remark 33 and Lemma 36, and we
omit the details here.

4.4. A decomposition processes for solving (4.13)

Firstly, we decomposition (4.13) to two subsystems.

Lemma 37 Let (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ) be the solution of (4.13), let ζh and ϕh ∈W∗

h0Λk+1 be such that, for
any ηh and ψh ∈W∗

h0Λk+1,{
〈Pk+1

h ζ c
h ,P

k+1
h ηh〉L2Λk+1 −〈δ k+1ϕh,δ k+1ηh〉L2Λk = 0

〈δ k+1ζ c
h ,δ k+1ψh〉L2Λk = 〈f,δ k+1ψh〉L2Λk

, (4.18)

and let σh and ρh ∈Wnc
h Λk−1 be such that, for any τh and ϖh ∈Wnc

h Λk−1,{
〈Pk−1

h σ c
h ,P

k−1
h τh〉L2Λk−1 −〈dk−1

h ρh,dk−1
h τh〉L2Λk = 0

〈dk−1
h σ c

h ,d
k−1
h ϖh〉L2Λk = 〈f,dk−1

h ϖh〉L2Λk
. (4.19)

Then
ζ

c
h = ζh, σ

c
h = σh, and ω

c
h = dk−1

h ρh +δ k+1ϕh. (4.20)

Proof The existence of solutions to (4.18) and (4.19) is easy to verify, where ζh and σh are uniquely
determined, ϕh is uniquely determined up to N (δ k+1,W∗

h0Λk+1), and ρh is uniquely determined up to
N (dk−1

h ,Wnc
h Λk−1). By the Hodge decomposition of P0Λk(Gh), we can decompose ωh ∈P0Λk(Gh)

to ωc
h = ιc

h + δ k+1ϕc
h + dk−1

h ρc
h with ιc

h ∈ HhΛk, ϕc
h ∈W∗

h0Λk+1 and ρc
h ∈Wnc

h Λk−1, and dk−1
h ρc

h and
δ k+1ϕc

h are uniquely determined. We can similarly write µh = χh +δ k+1ψh +dk−1
h ϖh. Substituting the

decompositions of ωc
h and µh into (4.13) leads to subsystems (4.18) and (4.19), and further (4.20). �
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Noting that both (4.18) and (4.19) are each a saddle problem whose solution is not unique, we are
now to further decompose them to series of semi positive definite problems to solve.

Lemma 38 Let (ζ yh ,ξ
y
h ,ϕ

y
h ) be a solution of the sequence of problems below:

1. find ζ yh ∈W∗
h0Λk+1, such that

〈δ k+1ζ
y
h ,δ k+1ψh〉L2Λk = 〈f,δ k+1ψh〉L2Λk , ∀ψh ∈W∗

h0Λ
k+1; (4.21)

2. find ξ yh ∈Wnc
h Λk, such that

〈dk
hξ
y
h ,d

k
hνh〉L2Λk+1 = 〈δ k+1ζ

y
h ,νh〉L2Λk , ∀νh ∈Wnc

h Λ
k; (4.22)

3. find ϕyh ∈W∗
h0Λk+1, such that

〈δ k+1ϕ
y
h ,δ k+1ηh〉L2Λk = 〈dk

hξ
y
h ,ηh〉L2Λk+1 , ∀ηh ∈W∗

h0Λ
k+1. (4.23)

Let (ζh,ϕh) be a solution of (4.18). Then

ζh =
(−1)nk

n− k
κ

δ
h (δ k+1ζ

y
h )+dk

hξ
y
h , and δ k+1ϕh = δ k+1ϕ

y
h . (4.24)

Proof Evidently, (ζ yh ,ξ
y
h ,ϕ

y
h ) exists and is unique up to N (δ k+1,W∗

h0Λk+1)×N (dk
h,W

ncΛk)×
N (δ k+1,W∗

h0Λk+1), further δ k+1ζ yh = δ k+1ζh. Since 〈Pk+1
h ζh,Pk+1

h ηh〉L2Λk+1 = 〈δ k+1ξh,δ k+1ηh〉L2Λk

for any ηh ∈W∗
hΛk+1, it holds that Pk+1

h ζh is orthogonal to N (δ k+1,W∗
h0Λk+1), and thus Pk+1

h ζh ∈
R(dk

h,W
nc
h Λk). Namely, there exists a ξ yh ∈Wnc

h Λk, such that ζh = (ζh−Pk+1
h ζh)+dk

hξ yh . As for any
νh ∈ Wnc

h Λk, 〈δ k+1ζh,νh〉L2Λk = 〈ζh,dk
hνh〉L2Λk+1 , it holds further that, with dk

hνh being piecewise
constant, 〈dk

hξ yh ,d
k
hνh〉L2Λk+1 = 〈δ k+1ζ yh ,νh〉L2Λk . It follows by the homotopy formula that ζh =

(−1)nk

n−k κδ
h (δ k+1ζ yh ) + dk

hξ yh . Then 〈δ k+1ϕh,δ k+1ηh〉L2Λk = 〈Pk+1
h ζ c

h ,P
k+1
h ηh〉L2Λk+1 = 〈dk

hξ yh ,ηh〉L2Λk+1

for ηh ∈W∗
h0Λk+1, and it thus follows that δ k+1ϕh = δ k+1ϕyh . The proof is completed. �

Similarly we have the decomposition of (4.19).

Lemma 39 Let (σyh , ι
y
h ,ρ

y
h ) be a solution of the sequence of problems below:

1. find σyh ∈Wnc
h Λk−1, such that

〈dk−1
h σ

y
h ,d

k−1
h ϖh〉L2Λk = 〈f,dk−1

h ϖh〉L2Λk , ∀ϖh ∈Wnc
h Λ

k−1; (4.25)

2. find ιyh ∈W∗
h0Λk, such that

〈δ kι
y
h ,δ kχh〉L2Λk−1 = 〈dk−1

σ
y
h ,χh〉L2Λk , ∀χh ∈W∗

h0Λ
k; (4.26)

3. find ρyh ∈Wnc
h Λk−1, such that

〈dk−1
h ρ

y
h ,d

k−1
h τh〉L2Λk = 〈δ kι

y
h ,τh〉L2Λk−1 , ∀τh ∈Wnc

h Λ
k−1. (4.27)
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Let (σh,ρh) be one solution of (4.19). Then

σh =
1
k

κh(dk−1
h σ

y
h )+δ kι

y
h , and dk−1

h σh = dk−1
h σ

y
h . (4.28)

Remark 40 It is illustrated that the system (4.13), as well as (4.5) and (4.3), can be transferred to
a series of semi positive definite problems to solve. Particularly, these systems can be solved without
knowledge of HhΛk, which consists of globally supported functions and which cannot generally be
figured out. A decomposition similar to Lemma 37 can be carried out onto (4.5) without the aid of
Wnc

h Λk and onto (4.8) without the aid of W∗
h0Λk. However, the further decomposition of (4.18) and

(4.19) will rely on the combinational utilization of Wnc
h Λk and W∗

h0Λk together.

5. Concluding remarks

This paper presents a unified construction of finite element spaces for HΛk in Rn, extending the
Crouzeix-Raviart paradigm to differential forms. Beyond error estimation as usual, differences from
existing classical schemes are preliminarily demonstrated using eigenvalue problems as examples, and
can be further investigated through additional applications, for instance where a locally defined stable
interpolator matters. Actually, the role of a locally-defined stable interpolator used to be illustrated
by the correct computation of the convex variational problems [34]. A new way to impose inter-cell
continuity is indicated, and finite element spaces can be constructed in future for various problems by
this new approach, as well as on non-simplicial meshes. This approach suggests potential extensions to
nonstandard and nonconforming meshes which will be discussed in future. This paper focuses on pure
Dirichlet and pure Neumann boundary conditions. It is noteworthy that mixed boundary conditions have
recently been investigated in [14, 27, 29]. The new approach also works for that and can be discussed
in future. Relevant to the equivalences established in [30] between the Crouzeix-Raviart element
discretization and the Raviart-Thomas element discretization for Poisson equations, the equivalence
between the conforming and nonconforming finite element schemes on the Hodge Laplace problem in
Section 4 is the generalization of [30] with new interpretations.

Within classical FEEC theory, discrete Hodge decompositions for HΛk spaces are established,
allowing for in-contractible domains, as demonstrated in (5.6) of [4], which reads V k

h = Bk
h 	⊥

Hk
h	⊥B∗k,h, where B∗k,h is the range of a globally defined operator d∗jh. These decompositions can

be rebuilt based on Wnc
h Λk. Beyond this, the theory of nonconforming finite element exterior calculus

contains discrete Helmholtz decompositions and Hodge decompositions for piecewise constant k-
forms corresponding to L2Λk for both contractible and in-contractible domains. Notably, the Hodge
decompositions presented in this paper differ from those in [4] in that all discrete operators involved are
locally defined, i.e., cell by cell. In other words, the discrete derivative and coderivative operators are
both local. Inspired by [26], discretization scheme for the Hodge Laplace problem with local derivatives
and local coderivatives will be studied in future. Recently, in two and three dimensions, discrete
Helmholtz decompositions have been explored not only for piecewise constant but also for piecewise
affine vector and tensor fields [11]; it is intriguing to observe that the non-Ciarlet type finite element
spaces of [21, 43] have been utilized as a basis therein. The generalization of the results presented in this
manuscript to higher-degree vector and tensor fields in higher dimensions will be discussed in future.
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In Section 3.2, a reciprocal causation (3.5) between two discrete complexes is presented. This can
be viewed a discrete analogue of the dual complexes composed by adjoint operator pairs (namely d
and δ ), defined in Section 4.1.2 of [4]. We note that kinds of dualities used to be studied in, e.g.,
[7, 8, 12, 18, 24, 29, 32, 33, 37, 40]. Prior works primarily address dual representations of finite element
spaces; dual grids have usually been used for the construction of discretized dual complexes. In this
paper, the discrete dual complexes by function spaces are both constructed on a same grid. Therefore,
the duality argument can be designed to derive uniform discrete Poincaré inequalities leveraging the
adjoint relationship between dk and δ k+1, formulating some analogue of the closed range theorem; see
Section B for a quantifiable version of the closed range theorem. Further, our approach avoids nonlocal
operators when establishing dual connections; all discrete operators involved are local. The discrete
complex duality can be expected further studied in future. Particularly, the validity of the structure of
complex and the commutative diagram may not necessarily depend on the dualities (1.3) or (2.1).
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A. Proofs of Lemmas 22, 23 and 24

Proof of Lemma 22 Decompose Wnc
h Λk = N (dk

h,W
nc
h Λk)⊕⊥ (Wnc

h Λk)y, orthogonal in L2Λk(Ω).
Given σh ∈ (Wnc

h Λk)y, decompose orthogonally σh = σ̊h + σyh , such that σ̊h ∈ P0Λk(Gh)

and σ
y
h ∈

⊕
T∈Gh

EΩ
T κT (P0Λ

k+1(T )). As N (dk
h,W

nc
h Λk) ⊂ P0Λk(T ), we have further σyh is

orthogonal to N (dk
h,W

nc
h Λk); therefore, σ̊h is orthogonal to N (dk

h,W
nc
h Λk), and further σ̊h ∈

R(δ k+1,W∗
h0Λk+1) by Theorem 25. Decompose W∗

h0Λk+1 = N (δ k+1,W∗
h0Λk+1)⊕⊥ (W∗

h0Λk+1)y.
Then R(δ k+1,W∗

h0Λk+1) = R(δ k+1,(W∗
h0Λk+1)y). Therefore,

‖σ̊h‖L2Λk = sup
µh∈(W∗h0Λk+1)y

〈σ̊h,δ k+1µh〉L2Λk

‖δ k+1µh‖L2Λk
= sup

µh∈(W∗h0Λk+1)y

〈σyh ,δ k+1µh〉L2Λk + 〈dk
hσyh ,µh〉L2Λk+1

‖δ k+1µh‖L2Λk

6 ‖σyh ‖L2Λk +‖dk
hσ
y
h ‖L2Λk+1 sup

µh∈(W∗h0Λk+1)y

‖µh‖L2Λk+1

‖δ k+1µh‖L2Λk

6 ‖dk
hσh‖L2Λk+1pic(dk

h,P
−
1 Λ

k(Gh))+‖dk
hσ
y
h ‖L2Λk+1pic(δ k+1,W∗

h0Λ
k+1).

Then ‖σh‖L2Λk 6 ‖σ̊h‖L2Λk +‖σyh ‖L2Λk 6 ‖dk
hσh‖L2Λk+1(2pic(dk

h,P
−
1 Λ

k(Gh))+pic(δ k+1,W∗
h0Λ

k+1)).
This completes the proof. �

Remark 41 No continuous problem or Sobolev space is used as a bridge here, and this is a direct
relation based on the discrete adjoint connection between W∗

h0Λk+1 and Wnc
h Λk.

Lemma 42 There exists a constant Ck,n, depending on the regularity of T , such that

‖µ‖L2Λk(T ) 6Ck,nhT‖dk
µ‖L2Λk+1(T ), for µ ∈ κT (P0Λ

k+1(T )). (A.1)
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Proof Given µ = ∑
α∈IXk+1,n

Cα

(
k+1

∑
j=1

(−1) j+1x̃α j dxα1 ∧ dxα2 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1

)
,

|µ|2H1Λk(T ) =

∥∥∥∥∥∥ ∑
α∈IXk,n

Cα

k+1

∑
j=1

(−1) j+1
∇x̃α j dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1

∥∥∥∥∥∥
2

L2Λk(T )

=

〈
∑

α∈IXk,n

Cα

k+1

∑
j=1

(−1) j+1
∇x̃α j dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1 ,

∑
α ′∈IXk,n

Cα ′

k+1

∑
i=1

(−1)i+1
∇x̃α ′i dxα ′1 ∧·· ·∧ dxα ′i−1 ∧ dxα ′i+1 ∧·· ·∧ dxα ′k+1

〉
L2Λk(T )

= ∑
α∈IXk,n

∑
α ′∈IXk,n

CαCα ′

k+1

∑
j=1

k+1

∑
i=1

(−1) j+ieα j · eα i

〈
dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1 ,

dxα ′1 ∧·· ·∧ dxα ′i−1 ∧ dxα ′i+1 ∧·· ·∧ dxα ′k+1

〉
L2Λk(T )

= (k+1)|T |∑
α

C2
α ,

and
∥∥∥dk

µ

∥∥∥2

L2Λk+1(T )
= (k + 1)2

∥∥∥∥∑
α

Cα dxα1 ∧ dxα2 ∧·· ·∧ dxαk+1

∥∥∥∥2

L2Λk+1(T )

= (k + 1)2|T |∑
α

C2
α .

Namely
‖dk

µ‖L2Λk+1(T ) =
√

k+1|µ|H1Λk(T ).

Therefore, by noting that
∫

T x̃ j = 0, with a constant Cn depending on the regularity of T , we obtain

‖µ‖L2Λk(T ) 6CnhT |µ|H1Λk(T ) =Cn(k+1)−1/2hT‖dk
µ‖L2Λk+1(T ).

This completes the proof. �

Proof of Lemma 23 Evidently,

pic(dk
h,P

−
1 Λ

k(Gh)) = sup
τh ∈

⊕
T∈Gh

EΩ
T κT (P0Λ

k+1(T ))

‖τh‖L2Λk

‖dk
hτh‖L2Λk+1

= max
T∈Gh

sup
τ∈κT (P0Λk+1(T ))

‖τ‖L2Λ(T )

‖dkτ‖L2Λk+1(T )
. (A.2)

By Lemma 42 and (A.2), pic(dk
h,P

−
1 Λk(Gh)) is of O(h) order. �

Proof of Lemma 24 By virtue of Lemma 22 and Remark 16, pic(δ k+1,W∗
h0Λk+1) is controlled by

pic(dk
h,W

nc
h Λk) the same way. Further by Lemma 23, we obtain Lemma 24. �
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B. A quantifiable closed range theorem

In this part, we establish a quantifiable version of the classical closed range theorem, in order to show
how Lemma 24 can be viewed as a discrete analogue of the closed range theorem.

Let X andY be two Hilbert spaces with respective inner products 〈·, ·〉X and 〈·, ·〉Y, and let (T,D) :
X→Y be an unbounded linear operator, D being the domain dense in X. The adjoint operator of
(T,D), denoted by (T∗,D∗), is defined by

〈T∗w,v〉X = 〈w,Tv〉Y, ∀v ∈ D, (B.1)

and the domain D∗ consists of such w ∈Y that there exists an element in X taken as T∗w to satisfy
(B.1). The closed range theorem (cf. [4, 10, 25, 41] and other textbooks) asserts that

R(T,D) is closed ⇐⇒ R(T∗,D∗) is closed. (B.2)

It further follows by Lemma 20 that

pic(T,D)< ∞ ⇐⇒ pic(T∗,D∗)< ∞. (B.3)

The theorem below further gives a preciser quantification of the closed range theorem.

Theorem 43 For (T,D) : X→Y and (T,D) :Y → X a pair of closed densely defined adjoint
operators,

pic(T,D) = pic(T,D). (B.4)

Proof Recalling the Helmholtz decomposition X = N (T,D)⊕⊥R(T,D), we have

Dy = D∩ (N (T,D))⊥ = D∩R(T,D). (B.5)

Therefore, provided that 0 < pic(T,D)< ∞ and thus R(T,D) =R(T,D), given v∈Dy, there exists
aw ∈Dy, such that v =Tw, then ‖w‖Y 6 pic(T,D)‖v‖X and

‖v‖2
X = 〈v,v〉X = 〈v,Tw〉X = 〈Tv,w〉Y 6 ‖Tv‖Y‖w‖Y 6 pic(T,D)‖Tv‖Y‖v‖X.

Therefore, ‖v‖X 6 pic(T,D)‖Tv‖X for any v ∈ Dy and pic(T,D) 6 pic(T,D) < ∞. Similarly, ∞ >
pic(T,D)> pic(T,D); note that (T,D) is the adjoint operator of (T,D). Namely, if one of pic(T,D)
and pic(T,D) is finitely positive, then pic(T,D) = pic(T,D).

If pic(T,D) = 0, then R(T,D) = {0} and Dy = {0}. It follows then pic(T,D) = 0. Finally, if one
of pic(T,D) and pic(T,D) is +∞, then so is the other. The proof is completed. �
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