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This paper presents a theory of nonconforming finite element exterior calculus based on a unified family
of nonconforming finite element spaces for HA* in R” (0 < k < n, n > 1), which are constructed in
this paper by a novel approach that seeks to mimic the dual connections between adjoint operators.
The family each employs piecewise Whitney forms as shape functions, including the lowest-degree
Crouzeix-Raviart element space for HA?, and optimal approximations and uniform discrete Poincaré
inequalities are presented. Further, with these newly constructed finite element spaces, discrete de
Rham complexes with commutative diagrams, and the discrete Helmholtz decomposition and Hodge
decomposition for piecewise constant spaces are established, based on which the Poincaré-Leftschetz
duality can be reconstructed discretely as an equality. The consequent framework of nonconforming finite
element exterior calculus is naturally connected to the classical conforming one but significantly different.
Notably, all discrete operators involved are local, namely acting cell by cell separately. The newly
constructed finite element spaces do not fit Ciarlet’s finite element definition, though, they admit locally
supported basis functions each spanning at most two adjacent cells, which makes the computation of
the local stiffness matrices and the assembling of the global stiffness matrix implementable by following
the standard procedure. Some numerical experiments are given to show the implementability and the
performance of the new kind of spaces. The cooperation of conforming and nonconforming finite element
spaces leads to new discretization schemes of the Hodge Laplace problem.

Keywords: exterior differential form; nonconforming finite element space; discrete Poincaré inequality;
discrete de Rham complex; commutative diagram; discrete Helmholtz-Hodge decomposition; discrete
Poincaré-Lefschetz duality; Hodge Laplace problem; nonconforming finite element exterior calculus.

1. Introduction

Conforming finite element exterior calculus has been extensively studied and well established based on
conforming finite elements for exterior differential forms; we refer to, e.g., Arnold et al. (2010); Arnold
(2018); Arnold et al. (2006); Boffi et al. (2013); Hiptmair (2002) and the references therein for details.
Naturally, the research has now reached a point where extension is appropriate to nonconforming
methods. Actually, for some specific applications, such as the HAK N H* A* problems, in general people
can not establish reasonable conforming primal finite element spaces, and we are led to the cruciality of
investigating the nonconforming discretizations to exterior differential operators and forms. Meanwhile,
well-designed nonconforming methods, with the (lowest-degree) Crouzeix-Raviart element (Crouzeix
& Raviart, 1973) being a typical example, can possess many characteristics that conforming ones lack,
including, e.g.,
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«» Different from conforming interpolators discussed before (Christiansen & Winther, 2008; Clément,
1975; Gawlik et al., 2021; Licht, 2019b,a; Ern & Guermond, 2017; Scott & Zhang, 1990; Falk
& Winther, 2014), the Crouzeix-Raviart element admits a cell-wise defined! stable interpolator
which works for functions in H! without using the inter-cell regularization, smoothing or averaging
techniques.

« In the construction of Helmholtz orthogonal decomposition of piecewise constants, which cannot
be established when restricted to conforming element spaces, the lowest-degree Crouzeix-Raviart
element plays an irreplaceable role (Arnold & Falk, 1989; Monk, 1991).

« Applied to the computation of Laplacian eigenvalues, the lowest-degree Crouzeix-Raviart element
scheme may yield asymptotic lower bounds to the exact eigenvalues (Armentano & Duran, 2004),
which differs essentially from conforming ones.

These properties may indicate the potential theoretical and practical significance of nonconforming
methods compared to conforming ones. Some specific nonconforming complexes, such as the well-
known 2-D discrete Stokes complex formulated by the Morley element, the Crouziex-Raviart element
and piecewise constant (Falk & Morley, 1990), have been established, though, a general construction
for the nonconforming Hilbert complex of differential forms, namely one that connects nonconforming
spaces for HAK in general R”, seems still absent. This paper will hence investigate nonconforming finite
element spaces for general exterior differential forms, by particularly generalizing the Crouzeix-Raviart
element for HA? to a unified family for HA* for 0 < k < n in R” by a novel approach, and systematic
theory of nonconforming finite element exterior calculus will then be established based on these spaces.

Attempts to generalize the Crouzeix-Raviart elements have been devoted before to the H(div)
problems (Arbogast & Correa, 2016; Shi & Pei, 2008; Quan et al., 2022). Following directly
from Crouzeix-Raviart element, these elements all use the integral of the normal components as
nodal parameters. For these elements, the crucial property of the Crouzeix-Raviart element, namely
completely cell-wise defined nodal interpolator, cannot be validated for functions with only H(div)
regularity, nor can an associated discrete Helmholtz decomposition be established. Further, if we try
to embed such an H(div) element into a discretized de Rham complex, which is a crucial issue for
the discretization of exterior differential operators, the continuity restriction for the corresponding H'
finite element is the evaluation at vertices. As well known, the continuity of the evaluation at vertices is
neither sufficient nor necessary for a finite element to work for H' problems, and the weak continuity
condition for these H(div) elements is not as reasonable as the original Crouzeix-Raviart element. It is
suggested in Bringmann et al. (2024) that vector Crouzeix-Raviart element can be used for H(curl) in
three dimension; though, the same obstacles can be come across.

Inspired by a new interpretation to the Crouzeix-Raviart element, instead of imposing local
continuity primally, a novel approach given in this paper of establishing the space is to reveal and
mimic the relationship between adjoint operators. Actually, beyond being a consequence, the well-
known integration by part formula which reads, on the lowest-degree Crouzeix-Raviart element space
VIR and the lowest-degree Raviart-Thomas element space VR on a grid %,

Y / Vvhyl—l—/ vpdive, =0, forv, € VR and 7, € VRT (1.1)
T T

Te9,

' Here and in the sequel, by “locally defined” or “cell-wise defined”, we mean if two functions u and v are equal on a cell T, then
their respective interpolations Iu and Iv are equal on 7'.
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also serves as a sufficient condition for a piecewise linear polynomial function to belong to VhCR.
Namely, VfR can be equivalently figured out as

VhCR = < vy, is piecewise linear, such that Z / Vit +/ vpdive, =0V1, € Z}}g . (1.2)
T€%, T T

This way the adjoint relation between (div, Hy(div)) and (V,H") is mimicked. This observation hints
quite a natural approach to construct a finite element space by constructing discrete adjoint relationships,
and is applied for spaces HA¥ in this paper.

By the aid of the existing conforming finite element spaces W;‘,Ak for H*AX by piecewise Whitney
forms, in this paper, a family of nonconforming finite element spaces for HAX is constructed by
mimicking the dual connections between adjoint operators d and 6. Advantages emerge naturally
from the construction of the finite element spaces. A first one is that the consistency error can be
controlled by the approximation of the adjoint conforming spaces. Then, cell-wise defined global
interpolators can be constructed for functions in HA* without extra regularity; the interpolators are
stable in broken HA* norm and provide optimal approximation to functions in HA*. Combined with
the global interpolators, these newly constructed spaces are connected by piecewise operations of d¥ to
form nonconforming finite element de Rham complexes, as well as commutative diagrams with the de
Rham Hilbert complexes. Further, the Helmholtz and Hodge decompositions of the piecewise constant
k-forms follow from the discrete adjoint relation. It is worth noting that the Poincaré-Leftschetz duality
can be reconstructed as Theorem 28 by the respective discrete harmonic spaces by conforming and
nonconforming finite element spaces, where the space and its dual are identical, which differs from
previous constructions with two individual discrete spaces that can be asymptotically made arbitrarily
close. With these structural properties given in Section 3, a framework of nonconforming finite element
exterior calculus is established, and is naturally linked to the classical conforming one by the discrete
complex duality (3.7) and the discrete Poincaré-Lefschetz duality.

Since nonconforming finite element spaces are constructed for (d*, HAK) and particularly discrete
Hodge decompositions are constructed accordingly, new discretization schemes can be developed.
Meanwhile, dual structures can be further investigated with more applications. We investigate the dual
roles of conforming and nonconforming spaces by constructing some new finite element schemes for
the Hodge Laplace problem with nonconforming spaces. The two finite element spaces connect with
each other within their respective discretization schemes through classical mixed formulations, and their
roles are complementary within the discretization scheme of a new mixed formulation.

On the other hand, in contrast to the conforming Whitney forms, the nonconforming finite element
spaces defined in this paper may not correspond to a “finite element”(triple) in Ciarlet’s sense (Ciarlet,
1978). Therefore, some basic features of the finite element methods cannot be dealt with in standard
ways. Two main obstacles are: (1), it is not any longer straightforward to figure out the basis functions of
the global finite element spaces, and (2), it is difficult, if not impossible, to follow the standard procedure
to prove the uniform discrete Poincaré inequalities. In this paper, we develop nonstandard approaches
to circumvent the obstacles. For every newly designed finite element space, we prove the existence of
a set of basis functions which each is supported on no more than two cells, and the relevant numerical
scheme can be implemented by the standard routine for the finite element in Ciarlet’s sense. Some
numerical experiments are provided to verify the implementability of the new finite element functions.
As a discrete analogue to the closed range theorem (see Section B for a quantifiable formulation), we
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prove that the constant of the discrete Poincaré inequality of a newly designed finite element space is
asymptotically equal to that of an associated conforming Whitney form space which has been proved
uniformly bounded; it follows that the discrete Poincaré inequality holds uniformly for the new spaces.

Finally we remark that the reciprocal causation (3.7) between two discrete complexes can be viewed
a discrete analogue of the complex duality composed by adjoint operator pairs (namely d and §), defined
in Arnold (2018, Section 4.1.2). We note that kinds of dual complexes in their respective specific
senses used to be studied in, e.g., Arnold et al. (2009); Berchenko-Kogan (2021); Buffa & Christiansen
(2007); Dtotko & Specogna (2013); Jain et al. (2021); Nakata et al. (2019); Oden (1972); Schoberl
(2008); Wieners & Wohlmuth (2011) and Licht (2017). Prior works primarily address representations
in the dual spaces, while the constructions in the present paper focus on the spaces of finite element
functions. We particularly remark that, such construction of finite element spaces and associated
complexes in the present paper by mimicking the dual connections between adjoint operators d and
0, cf. (1.2) above and (3.1) and (3.2) below, is relevant to but different from the complexes of discrete
distributional differential forms (Braess & Schoberl, 2008; Licht, 2017; Christiansen & Licht, 2020;
Hu et al., 2025). Actually, at the same time as nonconforming finite element spaces WECA"(W%A"),
without or with homogeneous boundary restrictions, can be constructed as discrete adjoint spaces of
the conforming finite element spaces WZOAk(W;Ak), the spaces WZA" can also be figured out by the
discrete adjoint relationship to WZCA" ; see Remarks 1 and 17; a duality between two complexes by
finite element spaces respectively fit for HAX and HSA" is established in this paper. Note that both
conforming and nonconforming known spaces can be chosen as accompanying spaces; this freedom
further brings convenience to the construction of finite element spaces, and is especially crucial for the
primal discretization to the Hodge-Laplace problem, which will be investigated in future.

The remainder of the paper is organized as follows. In the remaining part of this section, we
collect some preliminaries and notations. In Section 2, we use the two-dimensional H(div) problem
for instance to illustrate the main features of the new type of finite element spaces, including the
construction of the new space, the locally-supported basis functions, the basic error estimation by
cell-wise defined interpolators, and numerical verifications for the validity of the new finite element
spaces. In Section 3, a family of nonconforming finite element spaces are constructed for HAX in R”,
0 < k < n, with the Crouzeix-Raviart element space being the one for HAY. Based on these finite
element spaces, theory of nonconforming finite element exterior calculus is constructed, including
the Helmholtz/Hodge decomposition for piecewise constant k-forms, the discrete Poincaré-Lefschetz
duality, the discrete de Rham complex and commutative diagrams. Then in Section 4, the newly-
designed nonconforming spaces are used for the discretization of the Hodge Laplace problem. The
correspondent and complementary connections between the conforming and nonconforming spaces are
investigated with classical and new mixed formulations. Finally, in Section 5, some conclusions and
discussions are given.

Preliminaries and Notations In the sequel of the paper, we use .4 and Z to denote the Null space
and the Range of certain operators. Namely, for example, .4 (T,D) denotes {v e D: Tv =0}, and
Z(T,D) denotes {Tv: v € D}. For a Hilbert space H, we use the notations ®;; and ©g; to denote the
orthogonal summation and orthogonal difference; namely, for two spaces A and B in H, the presentation
A EBﬁ B implies that A and B are orthogonal in H, and evaluates as the direct summation of A and B;
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forACBCH,B @ﬁ A evaluates as the orthogonal complementation of A in B. The subscript H can
occasionally be dropped.

For Q a domain and T C Q, we use E5* : L'(T) — L'(Q) for the extension operator defined by
E$v=von T and E*v = 0 elsewhere. For V; C L'(T), we use E$*Vr for short of Z(ES*, Vr).

We use d* and §; for the exterior differential and codifferential operators on A*. §; = (—1)¥" %
A" Fx, x being the Hodge star operator. Denote, on the domain Z,

HAK(E) := {a) € [PAN(E) : df o € L2AF! (3)} L 0<k<n—1,
and by HyA¥(Z) the closure of 65°A*(Z) in HA¥(ZE). Denote
H*AK(E) = {u € L2AM(E) 1 S € L2AF! (5)} , 1<k<n,

and H{A(Z) the closure of ¢°AK(E) in H*A¥(Z). E can occasionally be dropped. The spaces
of harmonic forms are HAF := A (dF HA¥) ot Z(d 1 HARY), $HoA% = 4 (d* HoAF) ot
R (@ HoA ), 9% AR := N (85, H*AY) ©F B (Si1, H* AT, and H5AF = A (8¢, HiA¥) ot
(8141, H; A1), As the Helmholtz decompositions hold that

‘/V(dkﬂHAk) @J— %(6k+13H5Ak+l) :LzAk :%(dk_lvHAk_l) @J—‘/V(ale(;‘Ak)a

it follows that $HAF = 538Ak and $HA* = $H*AX. This is the Poincaré-Lefschetz duality(cf. Arnold
(2018, Section 4.5.5)) which links two dual complexes connected by d* and &, respectively.
The space of Whitney forms is denoted as (Arnold et al., 2006, 2010; Arnold, 2018) 27, Af =

k
Dok + 1(PyA1), where the Koszul operator & is k(dx® A --- A dx%) := ) (= 1)/ x% dx*1 A

A A% A dXPHUA - A AP for

o €IXy, = {a:(al,...,ak)ENk:lgal <0< < ap<n, Nthesetofintegers},

the set of k-indices, k < n. Note that 22, A® = 2,A” and & A" = Z)A". Denote the Whitney forms
associated with the operator §; by 2, Ak = x(P7NTH). Note that

N (@, 27N = 2@, PN = oA = B (811, PP AT = 4 (81, 2TAR). (1.3)
Denote, on a simplicial subdivision ¢, of Q, 0 < k < n,

PrAGy) = P EF 2y ANT), and 27" N(G,) = P EF 2] ANT). (1.4)

T, T€9,

Here and in the sequel, the subscript ““-,”” denotes mesh dependence. In particular, an operator with the
subscript -, ” indicates that the operation is performed cell by cell.

The conforming finite element spaces with Whitney forms are W,A* := P (%) NHA*, WAk =
P () NHoAE, WiAk := 2207 (4,) NH*A¥, and Wi AR .= 227 (¢,) N Hj A*. Note that the spaces
defined this way are respectively identical to the finite element spaces with piecewise Whitney forms
defined by the continuity of the nodal parameters (Arnold, 2018). Denote the spaces of discrete
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harmonic forms by $,A% := 4 (d*, W,A%) &+ 2(d*1 W A1), §,0AF .= A (dF, W)oAF) ot
R(d Wi oA, 997 A = (81, Wi AF) &1 (811, Wi AT, and $5j0A% := A (8, Wi AF) &+
RB(81y1, Wip AR,

Given T a simplex, denote, associated with T', &/ = x/ —c;, where c; is a constant such that Jr® =0,
and k7, a Koszul operator on 7', by for @ € IXy ,

~

Kr(dx%T Ao A dx%) Z YUHEDE% A AL %1 A dXF A A dx

Then d*~ k7 (dx* A ... dx%) = kdx?! A... dx%. By the aid of k7, we can rewrite the Whitney forms
as P AK(T) = PyAK(T) &t kr (PoAM(T)), orthogonal in L2AX(T). We further use kj, to denote
the operation of x7 cell by cell. Denote k9 1= %okKo *, K?- := %0 Ky 0%, and Kg 1= %0 K} 0*.

2. A nonconforming H(div) finite element space

In this section, we use the two-dimensional H(div) problem for instance to illustrate the main features
of the new type of finite element spaces studied in this paper.

Let Q C R? denote a polygon. As usual, we use V and div to denote the gradient operator and
divergence operator, respectively, and we use H' (Q), H} (Q), H(div,Q), Hy(div,Q), L*(Q) and L3(Q)
to denote certain Sobolev (Lebesgue) spaces. For here, we denote vector-valued quantities by undertilde
“.” We use (-,-) with subscripts to represent L? inner product.

For this planar domain, we specifically use .7}, for a shape-regular subdivision of Q with mesh size &
that consists of triangles, such that Q = Uy th and every boundary vertex is connected to at least one
interior vertex. Denote by &, gh, cfh s X 2, and 3&” the set of edges, interior edges, boundary edges,
vertices, interior vertices and boundary Vertices, respectively. We use n for the outward unit normal
vector with respect to a triangle.

Let V}I denote the continuous piecewise linear element space, and ZET denote the classical Raviart-
Thomas element space (Raviart & Thomas, 1977) of lowest degree on .7},. Denote V;llo = V}l ﬁH& (Q)
and ng = L/ET N Hy(div,Q). On a triangle T, denote the space of the lowest-degree Raviart-Thomas
shape functions by RT(T') := span{a + Bx: a € R?,f € R}. Then

Z(div,RT(T)) =R =4 (V,P(T)), and .4 (div,RT(T)) =R>=2(V,P(T)). 2.1)
Denote RT(.7},) : @ ERT(T). We define the nonconforming finite element spaces
Te9,
]RTEC = {:Cﬁ S RT(%) : Z (fﬂ,VVh)T + (diV}'j,,Vh)T =0, Vv, € V},O} s 2.2)
T,
and
RThO = {Ift S RT(%) : Z (yl,Vvh)T + (diVIj,,V/,)T = 0, VVh € V}l} . (2.3)
Teg,

Note that RT}° does not confirm to Ciarlet’s finite element definition. In Section 2.1, we will present
sets of locally supported basis functions for each of RT}® and RT}j for their implementability. In
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Section 2.2, we establish a cell-wise defined projective interpolator for H(div), and prove optimal
approximation and stability properties of RT}¢ and RT}g directly without the aid of the classical
Raviart-Thomas element.

Remark 1 Evidently,

Vio = {Vh is piecewise linear, such that Z (T, Vvp)1 + (divey, vi)r =0, V1), € RTEC} , (24)
Teg,

and

V) = {Vh is piecewise linear, such that Z (T, Vi) + (divey, viy)r =0, Vv, € R 28} . (2.5
TeT,

2.1. Locally supported global basis functions of RT} and RT}°

2.1.1. Structures of RT(T) on a triangle 7 and RT(.7,) on .7,

Foracell T € .}, we use a; (located at ¢;) and e; for the vertices and opposite edges, 4; being the height
on ¢;, i = 1:3. Let A; be the barycentric coordinates. Let |e;| and |4;| denote the length of ¢; and &;,
respectively, and let S denote the area; cf. Figure 1.

— ~
= S
//// \ \\\
as a; 3y a; 8 a4

FIG. 1. Illustration of the fields of the three basis functions of RT(7') on a cell T (bottom row). We pay particular attention to
the sign of the outward normal component at every edge (top row).

Denote

1

Then, {b7,i=1,2,3} form a basis of RT(T). Particularly, b7 -n;|.; = (1 —28;;)/le;|, and

(T
by =

(b7 . VAj) 7 + (divby , Aj)r = &, 1<i,j<3. 2.7
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The identities (2.1) confirm the existence of a basis of RT(T') that satisfies the dual relation (2.7), and
(2.6) further gives the precise formulation of them. See Figure 1 for the illustrations and profiles of the
local basis functions. Then

Th) = EB ESRT(T) = @ @ span {E%lg]}”} = @ @ span{E%lg’}”}.

Teg, TeIyMe2;,NIT MeZ;, dT>M

2.1.2. Two types of basis functions in RT}§ and RT}*
For M € %}, denote by ), the basis function of V,lq such that yy, (M) = 1 and v, vanishes on other
vertices. We can rewrite (2.7) to the lemma below.

Lemma2 ForM M c 2}, andT,T' € 9, such that M € 0T and M’ € 9T, with

. 1, M=M . l, T=T
Sy denotmg{ 0. MAM and Srp denotmg{ 0. TLT

it holds that
(E%% Ve ) + (diVE%IZ% Vi )11 = Spumar O77 -

Denote, for M € 2},

By = {;L'}L € @ span {E?b}”} : Z (zh, Vyn)r + (divey, wy)r = 0} , (2.8)
dT>M Teg,
and
Cm = @ span {E?Q]}’I} (2.9)
JdT>M

Then %y C Gu. We present the structures of RT} and RT}° in the lemma below.

Lemma3 1. IfM#N € 2 unéy={0};

2. RT)5= P 2u:
MeZ,

3. RT)=| P Gulo| P 2u
Mex} MeZ;

Proof The first item follows directly by definition. For the second, by (2.3) and Lemma 2,

RTj = me @ @ soan{EPM }: ¥ (0, Vyw)r + (dives, ww)r =0, YN € 2;
MeZ, dT>M T,
- @ {zhe D span {EPLY }: ¥ <zf1,wM>T+<divzh,wM>T—o},
Me%, dT>M T€J,,0T>M
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and the second item follows. For the third,

RT) =<1, € @ @ span {ET } 2 Y (T V) + (dives, ww)r =0, YN € Zjo
MeZ, dT>M Te9,

=qT € EB @ span {ET } : Z (zn, Vyn)r + (dive, wy)r =0, YN € Zio
Me2;i9T>M TeI,

@ T € @ @ span{E?QI}l}

Me ﬂfhb dT>M

= GB{ e @ span{EPDY } - Z(u,me(dw@z,wM)T:o}

Me2; oT>M TeZ,
@ @ @ span {ET }
Me inb J0T>M
The third item follows. This completes the proof. [J

2.1.3. Profiles of %, and 6y
Lemma 4 Given a vertex M that is shared by m triangles, dim(%y) = m — 1. There exist a set of
basis functions of Buy, each of which is supported on no more than two cells.

Proof The support of yj, consists of m triangles. Denote by T;, 1 < i < m, the m triangles that share
m

M. The basis functions in %), then take the form Z y,-g% , satisfying
i=1

(1 V (Wl 7)), + (vdivey , wr)1 ] = 0. (2.10)

™=

1

By (2.7), this equation admits (m — 1) linearly independent solutions, and every corresponding function
can be supported on two cells. Particularly, we assign the two cells to be adjacent. Figure 2 illustrates
the profile of a basis function.

The function as illustrated in Figure 2, denoted by 7, is

T= QI}{ onTy, T= _Q%[e on T, and T = 0, elsewhere.

By (2.7), on Ty, (T,Vym)r, + (dive,yu)r, = 1, (z,Vyr)r, + (dive, yr)r, =0, and (7, Vyn)r, +
(dive,wn)r, = 0; on T, (T,Vym)r, + (dive, ym)r, = —1, (T, VyRr)1, + (dive, Yr)7, = 0, and
(z, Vyn) 1, + (dive, ww )7, = 0. Then 7 satisfies (2.10). As T vanishes on other cells, we can obtain
Y (z.Vy)7r + (divz,y)r = 0 forall y € V;, thus 7 € RT}S.

T,
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FIG. 2. Profile of the field of a global basis functions in %)y, supported on two adjacent cells.

According to the profile of Figure 2, a set of linearly independent basis functions of %, can be
given in Figure 3, where M is an interior vertex, and in Figure 4, where M is a boundary vertex. This
completes the proof. [

Lemma 5 Given a vertex A that is shared by m triangles, dim(%,) = m. There exist a set of basis
Sfunctions of 64, each of which is supported on just one cell.

The proof of Lemma 5 is straightforward. We refer to Figure 5 for an illustration.

Remark 6 For RTj, the total amount of the locally supported basis functions is
Y, #{T € 7,:9T > M} — 1] =3#[T € J}] —#[M € 23] = dim(RT});).

MeZy,

For RT}, the total amount of the locally supported basis functions is

Y W{Ted,:0T>M}|+ Y #{Te€Z,:0T >3M}—1]

MeZ} MeZ}
=3#[T € J]—#[M € %] = dim(RT}").

In any case, T is covered by the supports of no more than m+ 6 basis functions in RT};¢ or RT},
where m is the number of cells that has at least one vertex in common with T. The generation of a local
stiffness matrix is a local operation, and the assembling of global stiffness matrices can be done by
following the standard routine for finite elements of Ciarlet-type.

Based on the specific profiles of the basis functions, we conclude this subsection by rephrasing
Lemma 3 as the theorem below.
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FIG. 3. Profiles of the fields of linearly independent basis functions of %y, M € %h’

Theorem 7 The space RT}( admits a set of linear independent basis functions, which are belonging
10 @2, $Bu and each supported on two adjacent triangles.

The space RT;° admits a set of linear independent basis functions; they consist of two types of
functions, Type I and Type Il. The functions of Type I are belonging to @, 2 By and each supported

on two adjacent triangles, and the functions of Type Il are belonging to @ Me 2 6w and each supported
on one triangle.

2.2. Approximation and stability

2.2.1. Locally-defined projective interpolator for H(div)
Given a triangle 7', define the cell-wise interpolator

18T H(div,T) — RT(T) (2.11)
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FIG. 5. The local basis functions associated with a boundary vertex M can work as global basis functions of RT}°.

such that
HRTT, Vv)r + (divl TT,V = (1,Vv)r + (divt,v)r, Vv e P (T). (2.12)
T =~ T 2 ~ ~

By 2.7), It =Y [(z,VA)7 + (divt, A;)7] bf, and IRT 6 = o for 6 € RT(T).

3
=1

1

Remark 8 The Crouzeix-Raviart element interpolator ISR : HY(T) — Py(T), defined such that
[ISRv = [ v, satisfies the condition (IRv,divt)r + (VIS?v, T)r = (v,divT)r + (Y, T)7, VT € RT(T).

On the triangulation .7}, define the global interpolator by

IN': @D EPH(div,T) — RT(Z,), suchthat (IF z4)r =I5 (t4l7), VT € G (2.13)
TeT,

Note that ]IET is defined completely cell by cell; namely, for any two functions v,, w, €
@reg, EfH (div,T) and any cell T such that v, = wj, on T, it holds that IRy, = ITwj on T.

Lemma 9 Z(IX' H(div,Q)) C RT and Z(IXY, Hy(div,Q)) € RT™S.
h h h h0

Proof Given ¢ € H(div,Q), (,Vvy) + (divo,v,) = 0 for any v, € V},,. Thus for any v, € V},,
Y, (VoI5 0)r + (v, divIgTo)r = Y (Vvi,0)r + (vi,dive)r = 0. Namely IR € RT}°, and
TE,%, T€f7h

thus Z(IR", H(div,Q)) C RT?. Similarly Z (I}, Hy(div,Q)) C RT}S. This completes the proof. [J
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Remark 10 Different from most existing interpolators, ]IRTG is not defined in the form of ¥.1;(0)1;,
where T; is each a global basis function of RT}S, and I; is each a functional on ©. Indeed, according
to theory of Zeng et al. (2023), as the global basis functions of RT}° may not be locally linearly
independent, interpolator defined as ¥ 1;(0)1; with I; depends on the lOCal information of ¢ cannot
be projective.

2.2.2. Approximation and stability
Lemma 11 With a constant C depending on the shape regularity of T,

1. stabilities:

||]IRT

|divI§ oo < ||divelor, and ||T¥ 6 |lav.r < C||O]|div.Ts

2. optimal approximation:

ldiv(g ~I7")llor = _inf Ndivig=D)llor, and IIQ—HI}TQIIdiv,T<C inf . 1g = Zla.r-
T€RT(T ERT(T

Proof Evidently, divIXTo is the L?(T) projection of divg onto piecewise constant space; therefore,
[divI¥To|lor < ||divelloq. Now we use PY for the L*(T) projection to constant, and P} :=
(P%)2. Then for any T € RT(T), we have by Poincaré inequality, ||z —P}z|jo.r < Chr||Vz|or =
Chr /V/2||divz|jo.r. Meanwhile, for any v € P(T), ||[v —P%v|or < Chr||Vv||or. For any v € Py (T),
(I8'a,Vv) ;. + (divIfT @, v)7 = (G, Vv)r + (divg,v) 7, and (divIF ¢, P)v)7 = (diva, PYv)r. Therefore,
(PYIET G, V), = (0. V(v — Pv))r + (diva,v — Pv)r. It follows that [B31E g7 < C(llafor +
hrlldiveo.r). Further [IXTalor < C(llg ), and 10 g 7 < Cll e -
The optimal approximation follows then from the stability and by the standard procedure. [

Moreover, as the global interpolator is defined completely piecewise, global stabilities hold and

o —T"Tsl4. <C inf |0 —1pll4 2.14
||~ h ~||d1Vh\ HERT(ﬂh)”FV J||dlvh7 ( )

where C depends on the regularity of the triangulation only.
Further, the Poincaré inequalities hold for RT}° and RT}

Lemma 12 Given 1), € RT}S, there is o, € RT}S, such that div,0, = divyTy, and ||oylo.o <
Cl|divazallo.c-

Proof Note that div;,T;, is piecewise constant, and there exists a T € H(div,Q), such that divt =

dthJ’ and ||T||dwg C”diVT”OQ Set o, = ]IETI, then dthgh = diVI, and ||gh||divh < CH,€||d1v <
C||divyTh||o.o- This completes the proof. [J

Remark 13 Evidently, RT}¢ VRT, and thus the approximation and stability properties of RT}°
follow. Though, we present direct proofs of them by the aid of the interpolator. In some sense, both the
two properties established here are optimal.
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2.3. Discretization of the variational problems

2.3.1. Discretization of the H(div) elliptic problem
We consider the problem: given f € L*(Q), find ¢ € H(div,Q), such that

(divg,divt) +(0,7) = (f,7), Vz € H(div,Q). (2.15)

It follows that dive € H} (Q), and f = —Vdive + o.
We here consider the discretization of (2.15): to find g, € RT}¢, such that

(divi G, divi i) + (G, Th) = (5 Tn), VTn € RT)S. (2.16)
Immediately (2.15) and (2.16) are well-posed. Denote ||z ||aiv, := (|| 24l + [|divszsl|3)"/2.
Theorem 14 Let ¢ and o}, be the solutions of (2.15) and (2.16), respectively. Then
lg —Ghllav, <2_inf o —Thlla, + inf [[divg —va]i0. (2.17)

Th ERTEC vV,

Proof By Strang’s lemma (cf. Ciarlet (1978)),

(dive, div,1;) + (Vdive, T,)

o —0pllaiv, <2 inf ||lo— Thllagw, + su
H~ ~h||dwh\ IhGRTz‘clL JLHdIVh ghele)rzc ||Ih||divh

For any v;, € V},O,
(dive, div, 1)) + (Vdive, 1;) = (dive — vy, divyzy) + (V(dive —vs), T4) < [|dive —vall1.0l|Zhldiv, -
Then (2.17) follows. [

By the abstract estimation, the precise convergence order can be figured out with respect to the
assumption on the regularity of the solution.

2.3.2. Discretization of the Darcy problem
We consider the problem: given f € L?(Q), find (1, 0) € L*(Q) x H(div,Q), such that

(0.7)  +(udivr) =0 V1 € H(div,Q), (2.18)
(diva,v) =(f,v) Yvel*Q). '
The discretization is to find (4, 04) € Po( ) x RT}C, such that
(@) Hwndivm) =0 Vg eRTY, o19)
(divhgh,vh) = ( ,Vh) Vv, € ,@0(%) )

Here &,(9},) is the space of piecewise constant functions. Evidently, (2.19) is well-posed.
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Theorem 15  Let (u,0) and (uy, o)) be the solutions of (2.18) and (2.19), respectively. Then

lu—unlloo+ o —0nllav, <C | inf  (Jlu—vpllo+I[o—Tillav,) + inf [Ju—spll10
Vi€ P20 (T) shEV],
TR ERTC

Proof By the Strang lemma for saddle point problem (cf., e.g., Boffi et al. (2013, Proposition5.5.6)),

(gvffl) + (u> dthZh)
|

u—1upllo.0+||0—0hdv, <C inf u—vpllo,o+ |G — Thlldiv,) - sup
[ loo+l llaiv,, < V}le%(%)(ll | o = znllaiv,) e BT
TR €RT)C

Note that ¢ = Vu, and we have, for any s, € V}lo,
(0.25) + (u,divy2;) = (Vu— Visy, 7)) + (1 — sp, diviTh) < |lu—snll1.0l|Znlldiv, -
It follows then

u—u, +l|lo—opllaw, <C inf u—v +lo—7hllgw, ) + Inf ||u—s,
u—unlloo+ 16— Snlld, < v,,e%(y,,)(H nllo. + 16 — Tallaiv,) shewOH nll1.e
T, €RT)C

This completes the proof. [

2.4. Numerical experiments

We show the implementability of RT;¢ and its difference from the classical Raviart-Thomas element
by two series of experiments.

2.4.1. Implementability of the space RT}¢
Firstly, we use RT}° to solve numerically the boundary value problems (2.15) and (2.18). We use the
unit square (0, 1)? as the computation domain, and we choose properly the source terms, such that

o for (2.15), the exact solution is
0 = (—2cos(mx) sin(my), sin(7x) cos(my)) ' ;
o for (2.18), the exact solution is
u = sin(mx)sin(zy), and ¢ = Vu.

We construct two series of triangulations, being crisscross (cf. Figure 6, left) and irregular (cf. Figure
6, right), respectively. The computational results are recorded in Figures 7 and 8.

On the two series of triangulations, we also use RT}° x Zy(.7,) to solve the eigenvalue problem of
(2.18), which is to find (A,u,0) € R x L*(Q) x H(div,Q), such that

(2.20)

(.1)  +(udivt) =0 V1 € H(div,Q),
(divo,v) =21 7* (u,v) VveL*(Q).

Note that on unit square, the eigenvalues of (2.20) take the values m> +n?, m,n € N*. Here we separate
the effect of 2 so that the results are easy to read. The respective eigenvalue problems of (2.15) and
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’ T‘riangula(io‘n ’ T‘riangula(io‘n
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FIG. 6. The initial triangulation of two series of triangulations. Left: crisscross; right: irregular.

log, (error)
log, (error)

1 15 2 25 3 35 4 4.5 5 71 1.5 2 25 3 35 4 4.5 5

log, (1/h) log, (1/h)

F1G. 7. Convergence process for (2.15). Left: on crisscross triangulations; right: on irregular triangulations.

(2.18) are essentially equivalent to each other. The 10 smallest computed eigenvalues of (2.20) on each
series of grids are recorded in Tables 1 and 2. In the tables, we use “L” to denote the level of each grid,
and use \/ " to denote the decreasing/increasing trend of the computed eigenvalues as the grids are
refined and refined. The computed eigenvalues converge to the exact eigenvalues nicely. Moreover, it
can be seen that the RT} scheme for (2.20) provides upper bounds to the exact eigenvalues.

P I I I I I I I
2.619 | 9.727 | 9.727 9.727 19.123 29.181 29.181 29.181 29.181 29.181
2.128 5982 | 5.982 10.477 14.547 14.547 | 20.650 | 20.650 | 32.039 | 38.907
2.031 5.223 5.223 8.511 11.009 11.009 14.480 14.480 | 20.137 20.137
2.008 | 5.055 5.055 8.122 10.242 10.242 13.345 13.345 17.739 17.739
2.002 | 5.014 | 5.014 8.030 10.060 | 10.060 | 13.085 13.085 17.182 | 17.182
N\ e N\ N\ N\ e N\ N\ N\ N\

TABLE I Computed eigenvalues by RT}° scheme on crisscross grids.

(U3 IF ) KUCY [N O Sy o)
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2 2
R —— || — a1 P —— || — a1
! Wi =0--(|& — Il n,, ! e |5 — Gl m,,
o Sy -o-|lu—u L, of Tl -0 ||u— |z,
= =
o o
e e
= I
L L
~ ~
o> o>
o o
-7 -7
1 1.5 2 25 3 35 4 45 5 1 1.5 2 25 3 35 4 45 5
log> (1/h) log> (1/h)

F1G. 8. Convergence process for (2.18). Left: on crisscross triangulations; right: on irregular triangulations.

Al AN K A A A A A A AP
2474 | 6921 | 7.575 | 12.150 | 17.167 | 20.663 | 21.687 | 23.653 | 25.825 | 26.359
2.123 | 5.636 | 5.770 | 9.850 12.660 | 13.141 | 18222 | 18.582 | 24.122 | 25.578
2.031 | 5.164 | 5.199 8.474 10.712 | 10.778 | 14.307 | 14.357 | 18.985 | 19.218
2.008 | 5.041 | 5.050 8.119 10.182 | 10.195 | 13.325 | 13.336 | 17.520 | 17.565
2.002 | 5.010 | 5.013 8.030 10.046 | 10.049 | 13.081 | 13.084 | 17.132 | 17.142

hY hY Y p Y pY p Y pY pY
TABLE 2 Computed eigenvalues by RT}° scheme on irregular grids.

mls|lw|o| =]

2.4.2. Comparison with the classical Raviart-Thomas element

FIG. 9. The initial triangulations. Left: regular; middle: fish bone; right: union Jack.

We here show the experiments of solving the eigenvalue problem (2.20) with the classical Raviart-
Thomas element scheme on the crisscross triangulation, the regular triangulation (cf. Figure 9, left),
the fish-bone triangulation (cf. Figure 9, middle), and the union Jack triangulation (cf. Figure 9, right).
The 10 smallest computed eigenvalues on each series of grids are recorded in Tables 3, 4, 5 and 6. It
can be seen that the classical (lowest-degree) Raviart-Thomas element might provide upper or lower
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bound to different eigenvalues, sensitive to the grid as well.> Numerical experiments on these special
triangulations which are easy to check are included.

P I I I I I A i
1.858 | 4.158 | 4.158 8.254 | 9.727 12.042 12.042 12.733 14.590 14.590
1.965 | 4.893 | 4.893 | 7.431 9.850 9.850 11.731 11.731 14.847 15.317
1.991 4975 | 4975 | 7.862 | 9.986 9.986 12.712 12.712 17.071 17.071
1.998 | 4.994 | 4.994 | 7.966 | 9.998 9.998 12.929 12.929 17.024 17.024
1.999 | 4998 | 4998 | 7.991 9.999 9.999 12.982 12.982 17.006 17.006

/! /! /! a /! /! a /! N\ N\

TABLE 3 Computed eigenvalues by the classical Raviart-Thomas
element scheme on crisscross grids.

wls|lw||—=|

P I I T I I
2.110 | 3.542 | 4.863 | 9.727 | 9.727 12.021 13.453 14.590 — —
2.032 | 4.834 | 5.096 | 8.077 | 8.957 9.414 11.107 11.377 12.242 14.729
2.008 | 4.964 | 5.026 | 8.119 | 9.798 9.815 12.896 13.422 16.153 16.196
2.002 | 4991 | 5.007 | 8.033 | 9.951 9.952 12.983 13.113 16.791 16.799
2.001 | 4.998 | 5.002 | 8.009 | 9.988 9.988 12.996 13.029 16.947 16.950
N\ Y N\ N\ / a / N\ /! /!

TABLE 4 Computed eigenvalues by the classical Raviart-Thomas
element scheme on regular grids.

wnlslw|lo|—|

Za T N I A N A A A A
2084 | 4127 | 4127 | 9727 | 9.727 | 12.895 | 12.895 | 14590 | — —
2032 | 4943 | 4959 | 8337 | 8.881 | 8.989 | 11359 | 11501 | 12.716 | 13.188

2.008 | 4.993 | 4995 | 8.126 | 9.788 | 9.800 13.153 | 13.166 | 16.107 | 16.159
2.002 | 4.999 | 4999 | 8.034 | 9.950 | 9.951 13.047 | 13.048 | 16.790 | 16.794
2.001 | 5.000 [ 5.000 | 8.009 | 9.988 | 9.988 13.012 | 13.012 | 16.948 | 16.948

N / A Y e / N N / e
TABLE 5 Computed eigenvalues by the classical Raviart-Thomas
element scheme on fish-bone grids.

wnlh|w|o| =

The RT;° scheme for (2.20) is further carried out on the regular triangulation, fish-bone
triangulation and the union Jack triangulation, and the 10 smallest computed eigenvalues on each series
of grids are recorded in Tables 7, 8 and 9. It can be seen that, in all these experiments, again, the R’]I‘ZC
scheme for (2.20) provides upper bounds for all the eigenvalues. The robustness is improved with RT}°.
This will be further investigated in future.

2 'We do not think it is now found for the first time that the classical (lowest-degree) Raviart-Thomas element scheme cannot be
expected to provide a certain bounds to the exact eigenvalues, though we do not find a referred literature.
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L4 (% % [ & & [ % [ & [ & [ & [
1 2.432 | 4127 | 4.127 | 7.295 | 9.727 12.895 12.895 14.590 — —
2 2.030 | 4.925 | 4.925 8.315 | 9.727 9.727 11.501 11.501 13.497 13.497
3 2.008 | 4.993 | 4.993 8.120 | 9.786 9.786 13.133 13.133 16.097 16.097
4 2.002 | 4.999 | 4.999 8.033 | 9.950 9.950 13.047 13.047 16.789 16.789
5 | 2.001 | 5.000 | 5.000 | 8.009 | 9.988 9.988 13.012 | 13.012 | 16.948 | 16.948
N\ / / N a /! N N /! a

TABLE 6 Computed eigenvalues by the classical Raviart-Thomas
element scheme on union Jack grids.

o I I A O I I I
1| 3.648 | 14590 | 14.590 | 14.590 | 14.590 | 14.590 | 14590 | 14590 | — —
2 [ 239 | 6748 | 8210 | 13.339 | 19.454 | 21.970 | 23.399 | 33.381 | 36.189 | 58361
32005 | 5414 | 5692 | 9432 | 12082 | 12343 | 15678 | 18.242 | 23299 | 23.656
4| 2004 [ 5102 | 5166 | 8372 | 10494 | 10510 | 13.684 | 14.246 | 18387 | 18.430
5 | 2006 | 5.026 | 5041 | 8094 | 10.122 | 10.123 | 13.173 | 13306 | 17.335 | 17.344
N N N N N p N N N N
TABLE 7 Computed eigenvalues by RT}° scheme on regular grids.
Ll X A A7 A A7 Ap A Ay A A
1| 3.648 | 14590 | 14.590 | 14.590 | 14.590 | 14.590 | 14590 | 14590 | — —
2 [ 2395 | 7247 | 7455 | 14590 | 17.630 | 20437 | 26.875 | 32313 | 36332 | 58.361
32095 | 5537 | 5552 | 9559 | 11969 | 12.131 | 16941 | 17.131 | 22453 | 23.322
4| 2024 [ 5133 | 5134 | 8380 | 10485 | 10497 | 13.960 | 13.973 | 18334 | 18.398
5 | 2006 | 5033 | 5033 | 8004 | 10121 | 10.122 | 13239 | 13.240 | 17.334 | 17.339
N\ . N\ “ \ N\ “\ \ N\ “\
TABLE 8 Computed eigenvalues by RT}° scheme on fish-bone grids.
L] 4 | 2 pE A pE pr: Al P 2 A0
1| 2918 | 14590 | 14500 | 14590 | 14590 | 14590 | 14.590 | 14500 | — —
2 | 2366 | 7274 | 7274 | 11672 | 19.454 | 19.454 | 29531 | 29531 | 43.615 | 58.361
3| 2087 | 5505 | 5505 | 9.466 | 11963 | 11.963 | 16.852 | 16.852 | 22973 | 22.973
4 [ 2022 | 5121 | 5121 | 8349 | 10447 | 10447 | 13.893 | 13.893 | 18.258 | 18.258
5 | 2005 | 5030 | 5030 | 8.08 | 10.109 | 10.109 | 13218 | 13.218 | 17.301 | 17.301
N\ N\ N\ “\ N\ N\ “\ N\ N\ “\
TABLE 9 Computed eigenvalues by RT}° scheme on union Jack grids.

3. A nonconforming framework for finite element exterior calculus

3.1. Nonconforming finite element spaces for HA* in R"

19

Let ¥, be a simplicial subdivision of Q. For 0 < k < n— 1, we define finite element spaces for HAF by

WiAK = {wh € P N(G)  (@n, Sk 1) pank — (s @, M) 2 p001 = 0, Y1, € Wip AR } (3.1)
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where d’}‘l denotes the cell-by-cell operation of d*, and, for HOA" s
%Ak = {(Dh IS ngl\k(gh) @, Ok 1 M) papk — <d§(1)h7nh>L2Ak+l =0,Vn, € W}il\k+1 } (3.2)

Set
WA = PyN (4,), and WiGA" := WiA" HL%A”(Q). (3.3)

emar ote that Wi°A” and WiGA° are the lowest-degree Crouzeix-Raviart element spaces.
R k 16 Note that WA and WS A® are the lowest-d C Raviart element )/
Sfurther n=1, WECA0 and W%AO coincide with the respective continuous linear element spaces.

Remark 17 Associated with the definitions, by (1.3), it holds that, for example,
WAk = {uh € PV NNG) : (Sittns ) papiet — (Pl ') poax = 0, V1, € W%A"‘l}.
By the same virtue of Theorem 7, noting (1.3), we can prove theorem below.

Theorem 18 The space W%Ak admits a set of linear independent basis functions, which are each
supported on two adjacent simplices.

The space WECA]‘ admits a set of linear independent basis functions; they consist of two types of
functions, Type I and Type I1. The functions of Type I are each supported on two adjacent simplices, and
the functions of Type Il are each supported on one simplex.

In the sequel, we use .7 for a family of shape regular subdivisions of Q.

3.1.1. Locally defined interpolator and optimal approximation
Similar to (2.11), we define a local interpolator ]I‘}k : HA"(T) — ,@fAk(T), 0 < k< n—1, such that,

k k
(I$ O, 8 1M) 2Ak(T) — (@19 O,M) 2k+1 (1) = (@, 8k1M) 20k (1) — <dkw7n>L2A"+1(T)7
forany 1 € 22"~ A¥1(T), and, following (2.13), define a global interpolator

k k k
IV . @ EPHANT) — 27 AN(9,), by (I} 0)|r =1F (0|7), VT € %,
Te9,

Set 19" the L2(T') projection to Z)A™ on T, and I¥" the L?(Q) projection to ZyA"(%;,). Again all the
interpolators are local ones.
Denote ||/”‘h||d§ = |d’;luh||izl\k+1 + Hlv‘h”,z_z,\k)l/z- The proofs of the two lemmas below are the same

as that of Lemma 9 and Lemma 11, and are omitted here.

Lemma 19 Z(19 HA¥) C WA and (19" | HyAk) € WIS AK,

Lemma 20 With Cy, uniform for 77, for 4, € % and o € D EFHANT),
Te9,

k
o-1% 0| <C inf ®— .
[ h ||d2 < k’nnheﬂfl?/ﬂ%)“ Tlh||d15
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3.1.2. Uniform discrete Poincaré inequalities
As generally 2(dk, WiCA¥) ¢ HAF1(Q), we cannot simply repeat the proof of Lemma 12. We adopt
an indirect approach by Lemma 25, which can be viewed a finite-dimensional analogue of the closed
range theorem by a comparison to Theorem 44 in Section B.

Let X and Y be two Hilbert spaces. For (T,D) : X — Y a closed operator, denote

DT:={veD:(v,w)x =0, Vwe A4 (T,D)}.

Define the Poincaré inequality’s criterion of (T,D) as
||VHX ifDJT #{0}’

. sup )
pic(T,D) := ¢ ozvepr [|TV[lw (34
0, ifDT={0}.

If pic(T,D) is finite, then the Poincaré inequality holds for (T,D). It is further indeed the best
constant of the Poincaré inequality. The index can be used for a criterion for closed range. We refer to,
e.g., Arnold (2018, Lemma 3.6) for a proof of Lemma 21 up to little technical modification.

Lemma 21 For (T,D): X — Y a closed operator, Z(T,D) is closed if and only if pic(T,D) < oo

The main estimation is the theorem below, which presents the uniform Poincaré inequality on the
orthogonal complement of .4 (dX, WI°A¥) in WA,

Theorem 22  With a constant Cy,, uniform for & 9,
pic(d),, W)A*) < G-
We firstly present three lemmas below, and postpone their technical proofs to appendix Section A.
Lemma 23  pic(d}, WIA¥) < pic(8xr1, WioAS) +2pic(ds, 27 AX(4,)).
Lemma 24 pic(ds, 2, AK(94,)) = O(h).
Lemma 25 |pic(8y41, WjoAF!) — pic(dl, WieAR)| = o/ (h).
Proof of Theorem 22 It is well known that (c.f., e.g., Arnold et al. (2006)), there exists a constant

Cin such that pic(dk, W,AF) < Cin, and, pic(d¥, WyA¥) < Ci, which implies immediately that
pic(5k+1,W;;0Ak+1) and pic(5k+1,Wf,Ak+1) are uniformly bounded. It follows then pic(d’ WECA") <

h?
Ck,n- u
Similarly, pic(d},, WICAY) < Cy ..

3.1.3. Finite element schemes for elliptic variational problems
Consider the elliptic variational problem: given f € L?>A*, find w € HAX, such that

(d*@,d 1) 2 pke1 + (0, 1) o = (B ) 2, V€ L2AR. (3.5)

It follows that d* @ € HiAK!, and ;10 + 0 =f.
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‘We consider its finite element discretization: find @ € W}’ZCA" , such that
(dy0n, i) 2 a1 + (@ns ) 200 = (B 1) 200, Vit € WIEAE. (3.6)
Immediately (3.5) and (3.6) are well-posed.
Theorem 26 Let @ and wy, be the solutions of (3.5) and (3.6), respectively.
| — @nllge <2

: k
Hw_.uh”d’;’_'_f 1n ‘d w_ThH5k+1‘

f |
* Ak+1
nEW oA

inf
HREW}S
The proof is the same as that of Theorem 14, and is omitted here.

3.2. Discrete Helmholtz-Hodge decompositions of ZyA¥(4),)
Theorem 27 (Discrete Helmholtz decomposition) ~ Orthogonal in L>A¥(Q), for 1 <k <n,

PoN (D) = Z(d} WA @ A (81, WioAR) = Z2(d) ' Wi AR @t (85, Wi AR);
forO<k<n—1,

PoN(G,) = N (dl, WIAR) @ R(8)4 1, WigAT) = 7 (df, WIS AR) @b 2(8y1 1, WiAKTT).

Proof We are going to show, for 1 <k < n,
PN (G,) = Z(d WISAST) @ (8, Wi AF),
and other assertions follow the same way.

By construction, ZyAX(%,) contains Z2(ds ', WIAK1) @ 47 (8, Wi, A¥). Conversely, let o, €
PoN(G,) o+ Z(dk~ WICAKT). Then for any py, € WICAF!,

Z <Gh,dk71ﬂh>L2Ak(T) + <5k6h,,uh>LzAk71(T) = <Gh,d1;;1,uh>L2Ak =0.
T,

Namely o, € Wj AX and further o, € A4 (8x, W}, AY). This completes the proof. [
By noting that, for 1 <k <n—1,
PoN(Gy) = Z(d} WISASY) @ (81, Wi AR) = A (df, WIEAR) @ Z(Ski1, WipAET),
we have immediately that, for 1 <k <n—1,
(A5 WA 7 (d), WIEAY) = Z(S11, WipAT) € A (81, WioAS).  (3.7)

Further, we can construct the discrete Poincaré-Lefschetz duality identities below.
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Theorem 28 (Discrete Poincaré-Lefschetz duality) For 1 <k<n—1,
N (A}, WIS ) & 2 (a7 WISAT) = (85, WigA') &5 (8511, WA )

and

N (), WA &7 (a1 WIGAT!) = A (81, WiA") & 2(8i1, WA ).

Denote H)°AF := #/(dk, WI°AK) &+ 22(d} ', WICAF1) and H)SAF = 4/ (dF, WISAK) ot
Z (d];l_1 , W AK=1) We have the discrete orthogonal decomposition of ZyA*(%,) below.

Theorem 29 (Discrete Hodge decomposition) For 1 <k<n—1,

PoN (@) = Z(d; WA & 5j0A (= HA) &5 B (81t WipA )
= 2(d WA ot 9 Ak (= 97 A%) @1 2 (81,1, WA, (3.8)
Remark 30 Within classical FEEC theory, as demonstrated in Arnold (2018, (5.6)), discrete Hodge
decompositions for HAF finite element spaces “V,/"(identical to W, AX in the present paper) are

established, allowing for in-contractible domains, which reads V,f = %’fl ot ﬁlfl ot Qﬁ’;h, where z%’,’;h is
the range of a globally defined operator d}fh. According to (3.7), similar decompositions can be rebuilt
associated with W;}CA". Contrastly, Theorem 29 is of a discretization of L> A for both contractible and
in-contractible domains. Notably, all discrete operators involved are locally defined, acting cell by cell.

3.3. Commutative diagrams

Lemma 31 Forany u € HAN(T), 0<k<n—1, H‘%kﬂdku = dkl‘}ku.

Proof Since d"1d*y =0, d11¢ @4y = 0. Further, 19 d*u € PyA*!. Then,

k+1 k+1
<H(} dkli75k+2n>L2Ak+1(T)_<dk+l]I(} dk.uvn>L2Ak+2(T)

= (@0, 8xam) ot oy — (A LMY 2 gy = (@0 ko) i (1) — (1, Baei1 Sk M) 24k )

k k .
= (d'17 M B2 2 pke1 (1) — (1g M, 8k41842M) 2 pk(r), YN E P NF(T).

Here we use underline to label the vanishing terms. Therefore, ]I‘}k+l diu = dk]I‘}k,u. (]

Immediately we have, for any u € HA*(Q), Hgkﬂdku = d’;ll[gku, 0<k<n—1.
We summarize all above to theorem below.
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Theorem 32 The following de Rham complexes commute:

: 0 1 n—1
R 2, HA° LN HA! a, LN HA"
0 1 n
LI LI s 69
inc nc A0 dg ne Al dlll dzil nc AN
R — WA — WA — — WA
0 1 n—1
0o — HoA° LN HoA! a9 . LA HoA"
L iy Jm (3.10)
0 Wwhe AO dg WncAl dfll dzil Wi AR
— o — o — e Pt

Remark 33 Given Theorem 28 the discrete Poincaré-Lefschetz duality, we are actually led to that,
once one of the four complexes in (3.9) and (3.10) is exact, so are the three others.

4. Discretization of the Hodge Laplace problem with nonconforming finite element spaces

In this section, we study the discretizations of the Hodge Laplace problem: given f € L2A¥, with P’§5 the
L? projection to AL, find @ € HAK(Q) NH A (Q) with & @ € H A (Q), such that

o L HAQ), and i dfw+d"'50 =Pt 4.1
The primal weak formulation is: find @ € HA* ﬂHS‘Ak, such that

(@,6)2pr =0, Vg € HAL,

4.2
{(dkw,d"u>LzAk+1+<5kw,6ku>LzAk1 = (F—PLf, )20, Vi€ HANQ)NHGANQ). (4.2)

A standard mixed formulation based on @ € HAX is generally used (Arnold, 2018), which seeks
(0P, 0P, OP) € HA* x HAK=! x $HAF, such that, for (i, 7,¢) € HA* x HAF! x $HAF,

(@P,6) 2pk =0
(0P, T) 24001 —(oP,d ) o =0 . (4.3)

(0P ) ppne HATTOP ) ppe (AP d ) e (£, 1) 12k

In this section, we investigate the application of the nonconforming finite element spaces to the
discretizations of this classical formulation and to a new “completely” mixed formulation.

Remark 34 Here we call (4.3) “primal” mixed formulation, and use the supscript P to label that.
Actually, for a function in HA¥ ﬂHé‘Ak, (4.3) sets P € HAX, and impose the continuity that it also
belongs to Hj AX in a dual way. It is natural to set @ € Hy AF and to impose the continuity that it also
belongs to HAX in a dual way. Namely, we are to set an auxiliary mixed formulation, which seeks
(09,89, 99) € HFAF x Hi A < H§AK, such that, for (1,m,6) € HiA* x HF AF x 55k,

<wd,g>L2Ak =0
<Cd7n>L2Ak+1 _<wd75k+ln>L2Ak =0 . “4.4)
(0% Wpare + (818 ) par (80, Sitt) apnt = (1) 2

In the aforementioned sense, this mixed formulation can be viewed as a dual one of (4.3).
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Conforming finite elements have been used for discretization of (4.3); they are naturally used
for (4.4). For example, we can consider the discretization for (4.4): to find (a);li, C;(,l7 19;11) € WZOAk X
Wi AL 550 AR, such that, for (L, h, Gn) € WigAX x Wi AKFL < 37 A,

<a)da G>L2Ak =0
<Pz+1cg,Pﬁ+lnh>L2Ak+l —<(D;li, 6k+1nh>L2Ak =0 4.5)
(Of ) ope 8k G8 ) 2k +(8rf, Spn) onr1 = (B Pk L) 2 0k

The well-posedness of (4.5) is the same as that of (4.8) below. The convergence analysis of (4.5)
can be done in a classical way; precisely, denote by ((7),?, C;Li, 19,‘3) € WZOA/‘ X WZOA/‘H X ﬁZOAk and
(@, 08, DY) € Wi, Af x Wi AL x §570 AR the respective solutions of the auxiliary problems

B <(Dd7 g>L2Ak =0
i (G, 1) 2 pk —(@f, Sk 1) 2pk - =0 ;40
(O ) oar (k1 G ) papne +(Ok@f, Setn) 2 e = (PR, hn) 12
and
y (@9, G)2pk =0
~ <C;,ia n~h>L2Ak+1 _<a);,ia Sk1Mn)ane =0 . 4.7)
(O ) pane 8k O ) pane +{(8k@f, St et = (£ k) 2k

It follows by standard procedure that
||(w;,ia C}?’ 79;11) - ((Df,l, 51?» 1_91?)||H*Aka*Ak+1 XI2AK S Ch”PI;;f”LZAk < Chl|ff| 2 px5
and o o
(@, G 05 — (@51, G O |-ttt < ChIEll 2
Meanwhile, the classical analysis (cf. Arnold et al. (2006, Theorem 7.10 and its proof)) holds as
| (wd7 Cdv ﬂd) - (d)/?a gﬁla {9;3) e abkserentst 2k < CHEJ|E]] 2z
if the domain Q is s-regular. The convergence analysis of (4.5) then follows.

4.1. Nonconforming discretization of (4.3)

By the newly designed nonconforming finite element spaces, the discrete problem is: to find
(@f ,0p, OF) € WICA* x WieAF~1 % 533 AK, such that, for (i, Ty, Gr) € WHCAF x WICAR™! x §CAK,

-1 -1 <w}l’)’l%:h>1L2Ak =9
(P, c]i;l:’lphi Tzaen —(Od T =0 (4.8)
(OF, ln) 2pk (" O ) 2k +(dyop di ) 2 pi1 = (6 Ph) 200

To verify the well-posedness of (4.8), following (Arnold, 2018, Section 4.2.2), writing Xj :=
Wi AOWREATT RS, with (s T 1) 1, = |l + 11 %ll g1 + 11l 2.6 denoting on X x X,

Bi((n, 0h, ), (W, Ths ) = (P oF Py 100 o i — (0F A3 ' 50 o p

— (0P un) 2k — <dl;1716}lz)7uh>L2Ak - <dlfctw}l:7dﬁuh>L2Ak*1 — (@), ) 2pr,  (4.9)
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we show the uniform inf-sup condition that

B B
(1,00, 9) €X1 02 (11,510 X | (D> O On) |1, | (L T, G| x;,

Given (@, 0, %;) € X, we can decompose orthogonally @y, = dﬁ_l Pn + w,? + ), with p, €

WAL 0 € $i°AF, and @} orthogonal to .4 (dX, Wi°A¥), such that, by the discrete Poincaré
inequality (Theorem 22), th||d;<_1 < cpllds popll 2 k-

Now, set T, = o), — C%ph, Up = — @y fd’;flo'h — Uy, and g, = -V, + 0);?, then
P
(ks T Gn)llx,, < Cll (@n, Gy D) x5

and

Bh((wha Oh, ﬂh)a (:uha Th, gh)) = ||Pﬁ_lch||i2[\k—l + ||dz_16h||%2/\k + ||d£wh||i2/\k+l

1 k—1 1
1 0nlape 107 os + 7 I Pullizpe = = (G P et
P P

Note further that
(0n, Pn) 2 ak-1 < NGl 2ae-1 1ol 2 s
c 1 c |
< lHGh”IZ‘ZAk—l +72th‘|i2/\k—l < l|‘6h||i2Ak—l +*||dl;l 1Ph||12‘2Ak
2 2cp 2 2

Thus

_ _ 1
By ((@r, 04, On), (Hns Ty Gh)) = ||Pﬁ IGh“izAkq + ||dz IGhHiZAk - EHGhHizAkq + Hdﬁwhniz,\kﬂ

1

2 2 k—

+ 1Ol 200 + wa? 7206 + C7||dh "l 2k
P
1 _
> §||Gh||iz,\k71 +(1=CR)|ldy " ul| 72 pe + |05 0m 1 7 e

1

2 2 k—1

+||19hHL2Ak+”w{JHL2Ak+C2 Hdh thLZAk'
P

Note that d¥ w7 = df wy, and, by Theorem 22, ||@/||;2x < C df |72 ak+1. It follows then
h%h h h [ L2A hPhllL2A

By,((0n, 00, On), (> Ty 1)) = Cll (0, 03, 00) 3,

with C depending on the Poincaré inequality only. The inf-sup condition (4.10) is then proved and the
well-posedness of (4.8) is verified.
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4.2. A novel mixed element scheme

It is natural to consider an approach where both d* and &; are operated in a dual way, and we begin
with this “completely” mixed formulation: to find (@¢, {¢, 6°,9¢) € L>AF x HF A x HAF1 x § AL,
such that, for (1,1, 7,¢) € L*A* x Hi AM! x HAF1 x §AL,

(0°,6) 2k =0
<Cc7n>L2Ak+l 7<w075k+1n>LzAk =0
(0, T) ;2 pk-1 —(0%,d 1) =0
(0 1) poak - H(8kr1 88 papn (@108, 1) o = (£, 1) 25
(4.11)
Lemma 35 For f € L>A¥, the problem (4.11) admits a unique solution (®°,{¢,6¢,9°), and
[0\ 2px + 1856,y + 10 lae1 + 19| 2a < CIIEl| 208 (4.12)

Further, ¢ = d*@°, 6¢ = §,@°, and @° solves (4.2).

Proof For (4.12), we only have to verify Brezzi’s conditions, which hold by the orthogonal Hodge
decomposition

LPAY = 2(d HAS Y @t 9A% @t 2 (81, HEA),

together with the closeness of Z2(d*~!, HAK"1) and % (81, H;A**"). The remaining assertions are
straightforward. The proof is completed. [

A lowest-degree stable discretization of (4.11) is: find (@, {f, 0, 0F) € oA (9),) x Wi AR x
WICAR=1 5 57¢ A, such that, for (L, Ny, Tr, Gi) € PoA () x WigARTT x WICART 5 gRe Ak,

<a)}(i> gh>L2Ak =0
<Pﬁ+1 C;?aPl;;thhZAkH —(@F, S 1 M) p2px =0
<Plfi_1 Gkﬁ ’IP;;_I Tn)paae-1 - —(@, dlfi_l Tepk =0
(O, M) 12 Ak +(Okt185, ln) 2k +(d, op, a2 pk = (f, n) 2 pk
(4.13)

Lemma 36 Given f € L>A%, the problem (4.13) admits a unique solution (@f, (S, 0f,95), and
i llz2pr +11Gill5y.., + 10 llge-1 + 11031l 2a% < ClIF 2%
The constant C depends on pic(8y41, WioA¥*1) and pic(dﬁfl,chAk_l).
Again, for the well-posedness of (4.13), we only have to verify Brezzi’s conditions, which holds by
the discrete Hodge decomposition (3.8). The stable decompositions (3.8) comes true by the aid of the

nonconforming space WECAk. Hence (4.13) is a new scheme hinted in nonconforming finite element
exterior calculus.
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4.3. Equivalences among lowest-degree mixed element schemes

Lemma 37 Let (of, (5, 08,95), (oF 0, 0F) and (of, {8, 93) be the solutions of (4.13), (4.8) and
(4.5), respectively. Then

Of =05, O =&F, Phof = of, §rof =P} 'of, 811Gt =PrE—d} ' of — 0, (4.14)
O =0, of =of, Piof = of, dyof =P ¢E, dfTof = Pif— 81§ — O, (4.15)
of = oP, PAIgl = dfwf, Phof =PoP, Siof =Pi 1P, 81t +dhoP =P — 0. (4.16)

Proof Let (0P, 3, 99) be the solution of (4.5). Then, with a G, € WI°A !,

(Of ttn) 2k + (Bic 1 G 1n) p2pk + (BkOf, Sicth) 2 401
+ (A s k) 2 pk — (O Sictti) 2 a0k = (B PR 20k,
for any W, € 2"~ AX(%,). Choosing arbitrarily p, € ZyA* (%), we have
O+ 81180 +d) o, =P, (4.17)

and
(81, Sicttn) 2k 1 — (Chy Sltn) ani1 =0, Yy € 2,7 AN(H)),
which leads to that §;0f = P’;l_lﬁh. Further, noting that (6%, 7)) 261 = (0, d57,)2p¢ for 7, €
WZCA]‘_1 we obtain (P];l_ Eh,Pk_ T >L2Ak 11— <a)h ,dh_ITh>L2Ak 0 for 7, € W“CA]‘_1
In all, (P wh,ch ,Gh,ﬁh) € %Ak(%) x Wi AR5 WieART 5 637¢ AR satisfies the system (4.13),
and thus (P hwh , Ch ,Op, ﬁh) (w;,8;, 04, 9;). This proves (4.14). Similarly can (4.15) be proved, and
(4.16) follows by (4.14) and (4.15). The proof is completed. [

The convergence analysis of (4.13) and (4.8) follow directly by Remark 34 and Lemma 37, and we
omit the details here.

4.4. A decomposition processes for solving (4.13)

Firstly, we decomposition (4.13) to two subsystems.

Lemma 38 Let (0f,(F,0F,0F) be the solution of (4.13), let &, and @, € W;oA**! be such that, for
any Ny, and W, € Wi AL

{ PG P ) opket —( Bkt @ny Skt M) 2pe =0 (4.18)
(Okt18)5 Oky 1 Wh) 20k = (£ 0kt Wi p2pr 7

and let oy, and py, € W;lw/\k_1 be such that, for any 1, and ©, € WZCA]‘_I,

{ Py of Py T ot — (T onedy T o =0 ) (4.19)
<dﬁ71 G/Sadlfflwhhmk = (f, dlff] ) 12 pk

Then
&i = &y, of = oy, and f = dy ' py+ iy 1 - (4.20)
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Proof The existence of solutions to (4.18) and (4.19) is easy to verify, where ;, and o}, are uniquely
determined, @y is uniquely determined up to A (8441, Wi, A*™1), and pj, is uniquely determined up to
N (d';fl ,WicAk=1) By the Hodge decomposition of ZyAX(%},), we can decompose @, € ZyAX(%,)
to of = 1§ + 81 9f +di s with 1f € 9,AF, f € Wi AFF! and pf € WIAK! and df ' pf and
Ol @, are uniquely determined. We can similarly write t; = ¥, + k1 W+ dff' @y,. Substituting the
decompositions of @} and py, into (4.13) leads to subsystems (4.18) and (4.19), and further (4.20). [0

Noting that both (4.18) and (4.19) are each a saddle problem whose solution is not unique, we are
now to further decompose them to series of semi positive definite problems to solve.

Lemma 39  Let (§;, &), @))) be a solution of the sequence of problems below:

1. find §; € Wi AFFY such that
(Si1Gis S W) 2pr = (B, St Wi 2pks VWi € WipA©H!s (421
2. find§j e WZCA]‘, such that
(dhEq, divi) ot = (8183 Vi) poaks Y Vi € WIEAK; (4.22)
3. find @ € WZOAk+1, such that
(Bri10h Sir M) p2pr = (85 M) 2 awrns V1 € WigAL (4.23)

Let (&, @n) be a solution of (4.18). Then

K2 (818y) +dEEy, and Sy = 81110 (4.24)

Proof  Evidently, ({7, &, 9;) exists and is unique up to A (Sxq1, WipAS) x 47 (df, W AK) x
JV(5k+1 ,WZOAk+1), further 6k+l ChJ = 5k+] gh- Since <PIZ+1Ch,PI;l+1T]h>L2Ak+1 = <6k+1§h7 5k+l T]h>L2A1<
for any 1, € WiAK! it holds that P} "', is orthogonal to A (841, Wi, A¥H!), and thus Py, €
2 (X, Wi AK). Namely, there exists a &; € WICAX, such that §, = (§, — Py §,) +d5&;. As for any
Vi, € WECA’“, (Ok+18hs Vi) ponk = (Ch,dﬁw) [2ak+1, it holds further that, with dﬁvh being piecewise

constant, (d¥&7 d5vy)aa1 = (85418, Vi) 2k It follows by the homotopy formula that §), =

-1 nk ) 4 )
(nf)k K2(5k+1Ch) +d1}<¢§h' Then (Ox+1Pn, Sk41Mn)2ak = <PI;§HC;fvPIZH77h>L2Ak+1 = <dﬁéh7nh>L2A"+l

for 17, € W;, A", and it thus follows that 8441 @, = 8x+1¢; . The proof is completed. [

Similarly we have the decomposition of (4.19).

Lemma 40 Let (0;,1;,p;) be a solution of the sequence of problems below:

1. find o € WI°A*™!, such that

(o, d @) o = £ A @) o pk, Y, € WICAKT (4.25)
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2. findy, € W,’;OAk, such that
{8k, 8kdn) a1 = (A7 03, dn) 2k V20 € WA (4.26)
3. find pj € W;llCAk_l, such that
<d§71Pﬁ>dzilTh>L2Ak = <5klﬁ7 Th>L2Ak*]> VT € WECAkil' (4.27)

Let (oy, py) be one solution of (4.19). Then

oy = %Kh(d’;flc;) + 87, and d5 o, =di ! o). (4.28)
Remark 41 [t is illustrated that the system (4.13), as well as (4.5) and (4.3), can be transferred to
a series of semi positive definite problems to solve. Particularly, these systems can be solved without
knowledge of $,A*, which consists of globally supported functions and which cannot generally be
figured out. A decomposition similar to Lemma 38 can be carried out onto (4.5) without the aid of
WZCAk and onto (4.8) without the aid of W;;OA". However, the further decomposition of (4.18) and
(4.19) will rely on the combinational utilization of W}:CA" and WZOA" together.

5. Concluding remarks

The basis of the nonconforming finite element exterior calculus in this paper is the unified construction
of finite element spaces for HAX in R”, extending the Crouzeix-Raviart paradigm to differential forms.
These spaces are not only conceptual objectives, but also practical discretization tools. Beyond error
estimation as usual, differences from existing classical schemes are preliminarily demonstrated using
eigenvalue problems as examples, and can be further investigated through additional applications, for
instance where a locally defined stable interpolator matters. Actually, the role of a locally-defined stable
interpolator used to be illustrated by the correct computation of the convex variational problems (Ortner,
2011). This paper focuses on pure Dirichlet and pure Neumann boundary conditions. It is noteworthy
that mixed boundary conditions have recently been investigated in Licht (2019a),Christiansen & Licht
(2020), and Licht (2017). The new approach also works for that and can be discussed in future.

A new approach to impose inter-cell continuity is indicated, and finite element spaces can be
constructed in future for various problems by this new approach. This approach also suggests potential
extensions to non-simplicial meshes, as well as nonstandard and nonconforming meshes which will be
discussed in future. Inspired by Lee & Winther (2018), discretization scheme for the Hodge Laplace
problem with local derivatives and local coderivatives will be studied in future. The present approach is
to be generalized to the primal discretization of Hodge-Laplace problems which needs nonconforming
finite element spaces with proper continuity.

Recently, in two and three dimensions, discrete Helmholtz decompositions have been explored
not only for piecewise constant but also for piecewise affine vector and tensor fields (Bringmann et al.,
2024); it is intriguing to observe that the non-Ciarlet type finite element spaces of Fortin & Soulie (1983)
and Zhang (2021) have been utilized as a basis therein. The generalization of the results presented in this
manuscript to higher-degree vector and tensor fields in higher dimensions will be discussed in future.

The notion of reconstructing and preserving adjoint relation is emphasized in the present paper.
Its basic role can be recognized via the duality-based argument designed to derive uniform discrete
Poincaré inequalities leveraging the adjoint relationship between d and §, which formulates some
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analogue of the closed range theorem; a quantifiable version of the closed range theorem is given in
Section B for a comparison. Further, relevant to the equivalences established in Marini (1985) between
the Crouzeix-Raviart element discretization and the Raviart-Thomas element discretization for Poisson
equations, the equivalence between the conforming and nonconforming finite element schemes on the
Hodge Laplace problem in Section 4 is the generalization of Marini (1985) with new interpretations.
This novel notion can be expected to find more other applications in future.
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A. Proofs of Lemmas 23, 24 and 25

Proof of Lemma 23 Decompose WIA* = 4/ (d¥, WI°AK) @1 (WICAK)=, orthogonal in L2AK(Q).

Given o), € (WI°A¥)-, decompose orthogonally o, = &, + o), such that &, € P,AH%,)

and oj € EBE?KT(@()AI‘“(T)). As A (A5, WIAK) ¢ PyAX(T), we have further of is
TG%},

orthogonal to 4 (df, WI°AX); therefore, &, is orthogonal to .4 (df, WiA), and further &), €

R (8k41, WioA*T1) by Theorem 27. Decompose Wi AFTl = 4/ (8p 1, WigAKTT) @b (Wi ARFT)-.

Then Z (8141, WioA¥ 1) = Z (8111, (Wi A¥T1)). Therefore,

6l = sup (s Okt 1Mh) 2k _ sup (04, Sk 1 n) 2 ak + (A O, ) p2 gk
LA Ly €W ARFT)- [ 8k+1 Mall 2k LR E(Wig Akt [ 8k+1 Ml 12k
<loplan + doplanes  sup A

L€ (Wi AR+ ) (| Ok+1 M| 2 Ak

< N\ dy0ull o e pic(dly, 27 A (G)) + [|d; 05 |2 v Pic(Sies 1, Wio A,

Then ||6p[ 2k < |6l 2a% + 1107 [l 24x < ||d§6h||L2Ak+l(2Pic(dﬁa<@f/\k(%)) +Pic(5k+1’WZoAk+l))~
This completes the proof. (]

Remark 42 No continuous problem or Sobolev space is used as a bridge here, and this is a direct
relation based on the discrete adjoint connection between W;‘IOAI"*'1 and WECA]‘.

Lemma 43 There exists a constant Cy ,, depending on the regularity of T, such that

1]l 2pk (1) < Conbr | Wl 2 i1y, for p € kr(PoATH(T)). (A.1)
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k+1 )
Proof Givenu= Y Cq4 (Z (=1 FE% X A dXP2 A A P A KGN dxo‘k“) :

O!E]IX[(+|T"

k+1

Ml = L Ca X (1) IVES dx® A A dx®E A dxEA A dx
aclXy,  j=I1 L2AK(T)
k+1 _
=( Y Ca Y (—1)/TIVEYAXH A A AT A AT A A dx P
(XEHX](‘" ]:l
k+1 i+1 ! ! ! / (X’
Y, Co Y ()RS AXA A A dx % A dx T A A dx B
OCIEHX;C.” i=1 L2k (T)
k+1k+1 ]
=Y Y ccu) Z 1)7He% - % ( dx® A= AP KB A A dx B
a€lXy , &/ €IXy, j=li=
AXPT A A X% A AP A A dx“’k+n> = (k+1)|T|Y.C2,
L2AK(T) o
2
k _ 2 o 03 [0 2 2
and Hd iy = O D7 [ L Cadx®™ A dx A p dxi 7Y C2.
o LZAk+1(T) o
Namely

||d IJHLZAH1 =Vvk ‘”‘HlAk

Therefore, by noting that fo’ 0, with a constant C,, depending on the regularity of 7, we obtain

||ﬂ||L2Ak(T) < Cahr |l ik ry = Ca(k + 1)71/21’17‘”‘1[(“'HLZA"“(T)'
This completes the proof. [

Proof of Lemma 24 Evidently,

7
pic(dy, 2 A () = sup Mﬂ
T € EB EFxr (PoNTH(T)) (1 T[] 2 pk41
T€Y,
=max sup N lezaery (A2)
T€%, tekr (PoN+U(T)) HdkTHLZAkH(T)
By Lemma 43 and (A.2), pic(d}, 22 AK(4,)) is of €(h) order. ]

Proof of Lemma 25 By virtue of Lemma 23 and Remark 17, pic(5k+1,WzoAk+l) is controlled by
pic(d}, WI°A¥) the same way. Further by Lemma 24, we obtain Lemma 25. O
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B. A quantifiable closed range theorem

In this part, we establish a quantifiable version of the classical closed range theorem, in order to show
how Lemma 25 can be viewed as a discrete analogue of the closed range theorem.

Let X and Y be two Hilbert spaces with respective inner products (-,-)x and (-, )y, and let (T, D) :
X — Y be an unbounded linear operator, D being the domain dense in X. The adjoint operator of
(T,D), denoted by (T*,D*), is defined by

(T"w,v)x = (w,Tv)y, VveD, (B.1)

and the domain D* consists of such w € Y that there exists an element in X taken as T*w to satisfy
(B.1). The closed range theorem (cf. Arnold (2018); Yosida (2012); Kato (2013); Brezis (2010) and
other textbooks) asserts that

Z(T,D)isclosed < Z(T*,D") is closed. (B.2)
It further follows by Lemma 21 that
pic(T,D) < oo <= pic(T*,D*) < oo, (B.3)
The theorem below further gives a preciser quantification of the closed range theorem.

Theorem 44 For (T,D): X = Y and (T,D) : Y — X a pair of closed densely defined adjoint
operators,
pic(T, D) = pic(T, D). (B.4)

Proof Recalling the Helmholtz decomposition X = .4 (T,D) &+ %2(T, D), we have

D’ =DN (A4 (T,D))* =DNZ(T,D). (B.5)
Therefore, provided that 0 < pic(T,ID) < e and thus Z(T',ID) = %Z(T, D), given v € D-, there exists
aw € D”, such that v ="Tw, then |w|y < pic(T,DD)|v|x and

IVI% = (v, v)x = (v, Tw)x = (Tv,w)y < | Tv|lx [wlly < pic(T, D)|Tv]y|[v]x.

Therefore, ||v||x < pic(T,ID)||Tv||x for any v € D~ and pic(T,D) < pic(T,ID) < cc. Similarly, e >
pic(T,D) > pic(T,ID); note that (T,D) is the adjoint operator of (T, D). Namely, if one of pic(T,D)
and pic(T, D) is finitely positive, then pic(T,D) = pic(T, D).

If pic(T,ID) =0, then Z(T,ID) = {0} and D~ = {0}. It follows then pic(T,D) = 0. Finally, if one
of pic(T, D) and pic(T,ID) is 4o, then so is the other. The proof is completed. [J
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