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This paper presents a theory of nonconforming finite element exterior calculus based on a unified family
of nonconforming finite element spaces for HΛk in Rn (0 6 k 6 n, n > 1), which are constructed in
this paper by a novel approach that seeks to mimic the dual connections between adjoint operators.
The family each employs piecewise Whitney forms as shape functions, including the lowest-degree
Crouzeix-Raviart element space for HΛ0, and optimal approximations and uniform discrete Poincaré
inequalities are presented. Further, with these newly constructed finite element spaces, discrete de
Rham complexes with commutative diagrams, and the discrete Helmholtz decomposition and Hodge
decomposition for piecewise constant spaces are established, based on which the Poincaré-Leftschetz
duality can be reconstructed discretely as an equality. The consequent framework of nonconforming finite
element exterior calculus is naturally connected to the classical conforming one but significantly different.
Notably, all discrete operators involved are local, namely acting cell by cell separately. The newly
constructed finite element spaces do not fit Ciarlet’s finite element definition, though, they admit locally
supported basis functions each spanning at most two adjacent cells, which makes the computation of
the local stiffness matrices and the assembling of the global stiffness matrix implementable by following
the standard procedure. Some numerical experiments are given to show the implementability and the
performance of the new kind of spaces. The cooperation of conforming and nonconforming finite element
spaces leads to new discretization schemes of the Hodge Laplace problem.

Keywords: exterior differential form; nonconforming finite element space; discrete Poincaré inequality;
discrete de Rham complex; commutative diagram; discrete Helmholtz-Hodge decomposition; discrete
Poincaré-Lefschetz duality; Hodge Laplace problem; nonconforming finite element exterior calculus.

1. Introduction

Conforming finite element exterior calculus has been extensively studied and well established based on
conforming finite elements for exterior differential forms; we refer to, e.g., Arnold et al. (2010); Arnold
(2018); Arnold et al. (2006); Boffi et al. (2013); Hiptmair (2002) and the references therein for details.
Naturally, the research has now reached a point where extension is appropriate to nonconforming
methods. Actually, for some specific applications, such as the HΛk∩H∗Λk problems, in general people
can not establish reasonable conforming primal finite element spaces, and we are led to the cruciality of
investigating the nonconforming discretizations to exterior differential operators and forms. Meanwhile,
well-designed nonconforming methods, with the (lowest-degree) Crouzeix-Raviart element (Crouzeix
& Raviart, 1973) being a typical example, can possess many characteristics that conforming ones lack,
including, e.g.,
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• Different from conforming interpolators discussed before (Christiansen & Winther, 2008; Clément,
1975; Gawlik et al., 2021; Licht, 2019b,a; Ern & Guermond, 2017; Scott & Zhang, 1990; Falk
& Winther, 2014), the Crouzeix-Raviart element admits a cell-wise defined1 stable interpolator
which works for functions in H1 without using the inter-cell regularization, smoothing or averaging
techniques.

• In the construction of Helmholtz orthogonal decomposition of piecewise constants, which cannot
be established when restricted to conforming element spaces, the lowest-degree Crouzeix-Raviart
element plays an irreplaceable role (Arnold & Falk, 1989; Monk, 1991).

• Applied to the computation of Laplacian eigenvalues, the lowest-degree Crouzeix-Raviart element
scheme may yield asymptotic lower bounds to the exact eigenvalues (Armentano & Durán, 2004),
which differs essentially from conforming ones.

These properties may indicate the potential theoretical and practical significance of nonconforming
methods compared to conforming ones. Some specific nonconforming complexes, such as the well-
known 2-D discrete Stokes complex formulated by the Morley element, the Crouziex-Raviart element
and piecewise constant (Falk & Morley, 1990), have been established, though, a general construction
for the nonconforming Hilbert complex of differential forms, namely one that connects nonconforming
spaces for HΛk in general Rn, seems still absent. This paper will hence investigate nonconforming finite
element spaces for general exterior differential forms, by particularly generalizing the Crouzeix-Raviart
element for HΛ0 to a unified family for HΛk for 0 6 k 6 n in Rn by a novel approach, and systematic
theory of nonconforming finite element exterior calculus will then be established based on these spaces.

Attempts to generalize the Crouzeix-Raviart elements have been devoted before to the H(div)
problems (Arbogast & Correa, 2016; Shi & Pei, 2008; Quan et al., 2022). Following directly
from Crouzeix-Raviart element, these elements all use the integral of the normal components as
nodal parameters. For these elements, the crucial property of the Crouzeix-Raviart element, namely
completely cell-wise defined nodal interpolator, cannot be validated for functions with only H(div)
regularity, nor can an associated discrete Helmholtz decomposition be established. Further, if we try
to embed such an H(div) element into a discretized de Rham complex, which is a crucial issue for
the discretization of exterior differential operators, the continuity restriction for the corresponding H1

finite element is the evaluation at vertices. As well known, the continuity of the evaluation at vertices is
neither sufficient nor necessary for a finite element to work for H1 problems, and the weak continuity
condition for these H(div) elements is not as reasonable as the original Crouzeix-Raviart element. It is
suggested in Bringmann et al. (2024) that vector Crouzeix-Raviart element can be used for H(curl) in
three dimension; though, the same obstacles can be come across.

Inspired by a new interpretation to the Crouzeix-Raviart element, instead of imposing local
continuity primally, a novel approach given in this paper of establishing the space is to reveal and
mimic the relationship between adjoint operators. Actually, beyond being a consequence, the well-
known integration by part formula which reads, on the lowest-degree Crouzeix-Raviart element space
V CR

h and the lowest-degree Raviart-Thomas element space V˜RT
h0 on a grid Gh,

∑
T∈Gh

∫
T

∇vhτ˜h +
∫

T
vhdivτ˜h = 0, for vh ∈V CR

h and τ˜h ∈V˜RT
h0 (1.1)

1 Here and in the sequel, by “locally defined” or “cell-wise defined”, we mean if two functions u and v are equal on a cell T , then
their respective interpolations Iu and Iv are equal on T .
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also serves as a sufficient condition for a piecewise linear polynomial function to belong to V CR
h .

Namely, V CR
h can be equivalently figured out as

V CR
h =

{
vh is piecewise linear, such that ∑

T∈Gh

∫
T

∇vhτ˜h +
∫

T
vhdivτ˜h = 0 ∀τ˜h ∈V˜RT

h0

}
. (1.2)

This way the adjoint relation between (div,H0(div)) and (∇,H1) is mimicked. This observation hints
quite a natural approach to construct a finite element space by constructing discrete adjoint relationships,
and is applied for spaces HΛk in this paper.

By the aid of the existing conforming finite element spaces W∗
hΛk for H∗Λk by piecewise Whitney

forms, in this paper, a family of nonconforming finite element spaces for HΛk is constructed by
mimicking the dual connections between adjoint operators d and δ . Advantages emerge naturally
from the construction of the finite element spaces. A first one is that the consistency error can be
controlled by the approximation of the adjoint conforming spaces. Then, cell-wise defined global
interpolators can be constructed for functions in HΛk without extra regularity; the interpolators are
stable in broken HΛk norm and provide optimal approximation to functions in HΛk. Combined with
the global interpolators, these newly constructed spaces are connected by piecewise operations of dk to
form nonconforming finite element de Rham complexes, as well as commutative diagrams with the de
Rham Hilbert complexes. Further, the Helmholtz and Hodge decompositions of the piecewise constant
k-forms follow from the discrete adjoint relation. It is worth noting that the Poincaré-Leftschetz duality
can be reconstructed as Theorem 28 by the respective discrete harmonic spaces by conforming and
nonconforming finite element spaces, where the space and its dual are identical, which differs from
previous constructions with two individual discrete spaces that can be asymptotically made arbitrarily
close. With these structural properties given in Section 3, a framework of nonconforming finite element
exterior calculus is established, and is naturally linked to the classical conforming one by the discrete
complex duality (3.7) and the discrete Poincaré-Lefschetz duality.

Since nonconforming finite element spaces are constructed for (dk,HΛk) and particularly discrete
Hodge decompositions are constructed accordingly, new discretization schemes can be developed.
Meanwhile, dual structures can be further investigated with more applications. We investigate the dual
roles of conforming and nonconforming spaces by constructing some new finite element schemes for
the Hodge Laplace problem with nonconforming spaces. The two finite element spaces connect with
each other within their respective discretization schemes through classical mixed formulations, and their
roles are complementary within the discretization scheme of a new mixed formulation.

On the other hand, in contrast to the conforming Whitney forms, the nonconforming finite element
spaces defined in this paper may not correspond to a “finite element”(triple) in Ciarlet’s sense (Ciarlet,
1978). Therefore, some basic features of the finite element methods cannot be dealt with in standard
ways. Two main obstacles are: (1), it is not any longer straightforward to figure out the basis functions of
the global finite element spaces, and (2), it is difficult, if not impossible, to follow the standard procedure
to prove the uniform discrete Poincaré inequalities. In this paper, we develop nonstandard approaches
to circumvent the obstacles. For every newly designed finite element space, we prove the existence of
a set of basis functions which each is supported on no more than two cells, and the relevant numerical
scheme can be implemented by the standard routine for the finite element in Ciarlet’s sense. Some
numerical experiments are provided to verify the implementability of the new finite element functions.
As a discrete analogue to the closed range theorem (see Section B for a quantifiable formulation), we
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prove that the constant of the discrete Poincaré inequality of a newly designed finite element space is
asymptotically equal to that of an associated conforming Whitney form space which has been proved
uniformly bounded; it follows that the discrete Poincaré inequality holds uniformly for the new spaces.

Finally we remark that the reciprocal causation (3.7) between two discrete complexes can be viewed
a discrete analogue of the complex duality composed by adjoint operator pairs (namely d and δ ), defined
in Arnold (2018, Section 4.1.2). We note that kinds of dual complexes in their respective specific
senses used to be studied in, e.g., Arnold et al. (2009); Berchenko-Kogan (2021); Buffa & Christiansen
(2007); Dłotko & Specogna (2013); Jain et al. (2021); Nakata et al. (2019); Oden (1972); Schöberl
(2008); Wieners & Wohlmuth (2011) and Licht (2017). Prior works primarily address representations
in the dual spaces, while the constructions in the present paper focus on the spaces of finite element
functions. We particularly remark that, such construction of finite element spaces and associated
complexes in the present paper by mimicking the dual connections between adjoint operators d and
δ , cf. (1.2) above and (3.1) and (3.2) below, is relevant to but different from the complexes of discrete
distributional differential forms (Braess & Schöberl, 2008; Licht, 2017; Christiansen & Licht, 2020;
Hu et al., 2025). Actually, at the same time as nonconforming finite element spaces Wnc

h Λk(Wnc
h0Λk),

without or with homogeneous boundary restrictions, can be constructed as discrete adjoint spaces of
the conforming finite element spaces W∗

h0Λk(W∗
hΛk), the spaces W∗

hΛk can also be figured out by the
discrete adjoint relationship to Wnc

h Λk; see Remarks 1 and 17; a duality between two complexes by
finite element spaces respectively fit for HΛk and H∗0 Λk is established in this paper. Note that both
conforming and nonconforming known spaces can be chosen as accompanying spaces; this freedom
further brings convenience to the construction of finite element spaces, and is especially crucial for the
primal discretization to the Hodge-Laplace problem, which will be investigated in future.

The remainder of the paper is organized as follows. In the remaining part of this section, we
collect some preliminaries and notations. In Section 2, we use the two-dimensional H(div) problem
for instance to illustrate the main features of the new type of finite element spaces, including the
construction of the new space, the locally-supported basis functions, the basic error estimation by
cell-wise defined interpolators, and numerical verifications for the validity of the new finite element
spaces. In Section 3, a family of nonconforming finite element spaces are constructed for HΛk in Rn,
0 6 k 6 n, with the Crouzeix-Raviart element space being the one for HΛ0. Based on these finite
element spaces, theory of nonconforming finite element exterior calculus is constructed, including
the Helmholtz/Hodge decomposition for piecewise constant k-forms, the discrete Poincaré-Lefschetz
duality, the discrete de Rham complex and commutative diagrams. Then in Section 4, the newly-
designed nonconforming spaces are used for the discretization of the Hodge Laplace problem. The
correspondent and complementary connections between the conforming and nonconforming spaces are
investigated with classical and new mixed formulations. Finally, in Section 5, some conclusions and
discussions are given.

Preliminaries and Notations In the sequel of the paper, we use N and R to denote the Null space
and the Range of certain operators. Namely, for example, N (T,D) denotes {v ∈ D : Tv = 0}, and
R(T,D) denotes {Tv : v ∈ D} . For a Hilbert space H, we use the notations ⊕⊥H and 	⊥H to denote the
orthogonal summation and orthogonal difference; namely, for two spaces A and B in H, the presentation
A⊕⊥H B implies that A and B are orthogonal in H, and evaluates as the direct summation of A and B;
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for A ⊂ B ⊂ H, B	⊥H A evaluates as the orthogonal complementation of A in B. The subscript H can
occasionally be dropped.

For Ω a domain and T ⊂ Ω, we use EΩ
T : L1(T )→ L1(Ω) for the extension operator defined by

EΩ
T v = v on T and EΩ

T v = 0 elsewhere. For VT ⊂ L1(T ), we use EΩ
T VT for short of R(EΩ

T ,VT ).
We use dk and δ k for the exterior differential and codifferential operators on Λk. δ k = (−1)kn ?

dn−k?, ? being the Hodge star operator. Denote, on the domain Ξ,

HΛ
k(Ξ) :=

{
ω ∈ L2

Λ
k(Ξ) : dk

ω ∈ L2
Λ

k+1(Ξ)
}
, 06 k 6 n−1,

and by H0Λk(Ξ) the closure of C ∞
0 Λk(Ξ) in HΛk(Ξ). Denote

H∗Λk(Ξ) :=
{

µ ∈ L2
Λ

k(Ξ) : δ kµ ∈ L2
Λ

k−1(Ξ)
}
, 16 k 6 n,

and H∗0 Λk(Ξ) the closure of C ∞
0 Λk(Ξ) in H∗Λk(Ξ). Ξ can occasionally be dropped. The spaces

of harmonic forms are HΛk := N (dk,HΛk) 	⊥ R(dk−1,HΛk−1), H0Λk := N (dk,H0Λk) 	⊥
R(dk−1,H0Λk−1), H∗Λk := N (δ k,H∗Λk)	⊥ R(δ k+1,H∗Λk+1), and H∗0Λk := N (δ k,H∗0 Λk)	⊥
R(δ k+1,H∗0 Λk+1). As the Helmholtz decompositions hold that

N (dk,HΛ
k)⊕⊥R(δ k+1,H∗0 Λ

k+1) = L2
Λ

k = R(dk−1,HΛ
k−1)⊕⊥N (δ k,H∗0 Λ

k),

it follows that HΛk = H∗0Λk and H0Λk = H∗Λk. This is the Poincaré-Lefschetz duality(cf. Arnold
(2018, Section 4.5.5)) which links two dual complexes connected by dk and δ k, respectively.

The space of Whitney forms is denoted as (Arnold et al., 2006, 2010; Arnold, 2018) P−
1 Λ

k =

P0Λ
k + κ(P0Λ

k+1), where the Koszul operator κ is κ(dxα1 ∧ ·· · ∧ dxαk) :=
k

∑
j=1

(−1) j+1xα j dxα1 ∧

·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk for

α ∈ IXk,n :=
{

α = (α1, . . . ,αk) ∈ Nk : 16 α1 < α2 < · · ·< αk 6 n, N the set of integers
}
,

the set of k-indices, k 6 n. Note that P−
1 Λ0 = P1Λ0 and P−

1 Λn = P0Λn. Denote the Whitney forms
associated with the operator δ k by P∗,−

1 Λ
k := ?(P−

1 Λ
n−k). Note that

N (dk,P−
1 Λ

k) = R(dk−1,P−
1 Λ

k−1) = P0Λ
k = R(δ k+1,P

∗,−
1 Λ

k+1) = N (δ k,P
∗,−
1 Λ

k). (1.3)

Denote, on a simplicial subdivision Gh of Ω, 06 k 6 n,

P−
1 Λ

k(Gh) :=
⊕

T∈Gh

EΩ
T P−

1 Λ
k(T ), and P∗,−

1 Λ
k(Gh) :=

⊕
T∈Gh

EΩ
T P∗,−

1 Λ
k(T ). (1.4)

Here and in the sequel, the subscript “ ·h ” denotes mesh dependence. In particular, an operator with the
subscript “ ·h ” indicates that the operation is performed cell by cell.

The conforming finite element spaces with Whitney forms are WhΛk :=P−
1 (Gh)∩HΛk, Wh0Λk :=

P−
1 (Gh)∩H0Λk, W∗

hΛk := P∗,−
1 (Gh)∩H∗Λk, and W∗

h0Λk := P∗,−
1 (Gh)∩H∗0 Λk. Note that the spaces

defined this way are respectively identical to the finite element spaces with piecewise Whitney forms
defined by the continuity of the nodal parameters (Arnold, 2018). Denote the spaces of discrete
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harmonic forms by HhΛk := N (dk,WhΛk)	⊥ R(dk−1,WhΛk−1), Hh0Λk := N (dk,Wh0Λk)	⊥
R(dk−1,Wh0Λk−1), H∗hΛk :=N (δ k,W∗

hΛk)	⊥R(δ k+1,W∗
hΛk+1), and H∗h0Λk :=N (δ k,W∗

h0Λk)	⊥
R(δ k+1,W∗

h0Λk+1).
Given T a simplex, denote, associated with T , x̃ j = x j−c j, where c j is a constant such that

∫
T x̃ j = 0,

and κT , a Koszul operator on T , by for α ∈ IXk,n

κT (dxα1 ∧·· ·∧ dxαk) :=
k

∑
j=1

(−1)( j+1)x̃α j dxα1 ∧ . . . dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk .

Then dk−1κT (dxα1 ∧ . . . dxαk) = k dxα1 ∧ . . . dxαk . By the aid of κT , we can rewrite the Whitney forms
as P−

1 Λk(T ) = P0Λk(T )⊕⊥ κT (P0Λk+1(T )), orthogonal in L2Λk(T ). We further use κh to denote
the operation of κT cell by cell. Denote κδ := ?◦κ ◦?, κδ

T := ?◦κT ◦?, and κδ
h := ?◦κh ◦?.

2. A nonconforming H(div) finite element space

In this section, we use the two-dimensional H(div) problem for instance to illustrate the main features
of the new type of finite element spaces studied in this paper.

Let Ω ⊂ R2 denote a polygon. As usual, we use ∇ and div to denote the gradient operator and
divergence operator, respectively, and we use H1(Ω), H1

0 (Ω), H(div,Ω), H0(div,Ω), L2(Ω) and L2
0(Ω)

to denote certain Sobolev (Lebesgue) spaces. For here, we denote vector-valued quantities by undertilde
“·˜”. We use (·, ·) with subscripts to represent L2 inner product.

For this planar domain, we specifically use Th for a shape-regular subdivision of Ω with mesh size h
that consists of triangles, such that Ω = ∪T∈ThT and every boundary vertex is connected to at least one
interior vertex. Denote by Eh, E i

h, E b
h , Xh, X i

h and X b
h the set of edges, interior edges, boundary edges,

vertices, interior vertices and boundary vertices, respectively. We use n for the outward unit normal
vector with respect to a triangle.

Let V1
h denote the continuous piecewise linear element space, and V˜RT

h denote the classical Raviart-
Thomas element space (Raviart & Thomas, 1977) of lowest degree on Th. Denote V1

h0 := V1
h∩H1

0 (Ω)
and V˜RT

h0 := V˜RT
h ∩H0(div,Ω). On a triangle T , denote the space of the lowest-degree Raviart-Thomas

shape functions by RT(T ) := span
{

α˜+βx˜ : α˜ ∈ R2,β ∈ R
}

. Then

R(div,RT(T )) = R= N (∇,P1(T )), and N (div,RT(T )) = R2 = R(∇,P1(T )). (2.1)

Denote RT(Th) :=
⊕

T∈Th

EΩ
T RT(T ). We define the nonconforming finite element spaces

RTnc
h :=

{
τ˜h ∈ RT(Th) : ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀vh ∈ V1
h0

}
, (2.2)

and

RTnc
h0 :=

{
τ˜h ∈ RT(Th) : ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀vh ∈ V1
h

}
. (2.3)

Note that RTnc
h does not confirm to Ciarlet’s finite element definition. In Section 2.1, we will present

sets of locally supported basis functions for each of RTnc
h and RTnc

h0 for their implementability. In
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Section 2.2, we establish a cell-wise defined projective interpolator for H(div), and prove optimal
approximation and stability properties of RTnc

h and RTnc
h0 directly without the aid of the classical

Raviart-Thomas element.

Remark 1 Evidently,

V1
h0 =

{
vh is piecewise linear, such that ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀τ˜h ∈ RTnc
h

}
, (2.4)

and

V1
h =

{
vh is piecewise linear, such that ∑

T∈Th

(τ˜h,∇vh)T +(divτ˜h,vh)T = 0, ∀vh ∈ RTnc
h0

}
. (2.5)

2.1. Locally supported global basis functions of RTnc
h0 and RTnc

h

2.1.1. Structures of RT(T ) on a triangle T and RT(Th) on Th
For a cell T ∈Th, we use ai (located at a˜i) and ei for the vertices and opposite edges, hi being the height
on ei, i = 1 : 3. Let λi be the barycentric coordinates. Let |ei| and |hi| denote the length of ei and hi,
respectively, and let S denote the area; cf. Figure 1.

a1

a2 a3

−1/|e1|

+1/|e2|
+1/|e3|

e1

e2e3

n1

n2n3 b˜a1
T

a1

a2 a3

+1/|e1|

−1/|e2|
+1/|e3|

e1

e2e3 b˜a2
T

a1

a2 a3

+1/|e1|

+1/|e2|
−1/|e3|

e1

e2e3 b˜a3
T

FIG. 1. Illustration of the fields of the three basis functions of RT(T ) on a cell T (bottom row). We pay particular attention to
the sign of the outward normal component at every edge (top row).

Denote
b˜ai

T :=
1

2S
(x˜+a˜i−a˜ j−a˜k), i = 1,2,3, {i, j,k}= {1,2,3} . (2.6)

Then,
{

b˜ai
T , i = 1,2,3

}
form a basis of RT(T ). Particularly, b˜ai

T ·n j|e j = (1−2δi j)/|e j|, and

(b˜ai
T ,∇λ j)T +(divb˜ai

T ,λ j)T = δi j, 16 i, j 6 3. (2.7)
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The identities (2.1) confirm the existence of a basis of RT(T ) that satisfies the dual relation (2.7), and
(2.6) further gives the precise formulation of them. See Figure 1 for the illustrations and profiles of the
local basis functions. Then

RT(Th) =
⊕

T∈Th

EΩ
T RT(T ) =

⊕
T∈Th

⊕
M∈Xh∩∂T

span
{

EΩ
T b˜M

T

}
=
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
.

2.1.2. Two types of basis functions in RTnc
h0 and RTnc

h
For M ∈Xh, denote by ψM the basis function of V1

h such that ψM(M) = 1 and ψM vanishes on other
vertices. We can rewrite (2.7) to the lemma below.

Lemma 2 For M,M′ ∈Xh and T,T ′ ∈Th, such that M ∈ ∂T and M′ ∈ ∂T ′, with

δMM′ denoting
{

1, M = M′

0, M 6= M′ and δT T ′ denoting
{

1, T = T ′

0, T 6= T ′ ,

it holds that
(EΩ

T b˜M
T ,∇ψM′)T ′ +(divEΩ

T b˜M
T ,ψM′)T ′ = δMM′δT T ′ .

Denote, for M ∈Xh,

BM :=

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
, (2.8)

and
CM :=

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
. (2.9)

Then BM ⊂ CM . We present the structures of RTnc
h0 and RTnc

h in the lemma below.

Lemma 3 1. If M 6= N ∈Xh, CM ∩CN = {0};
2. RTnc

h0 =
⊕

M∈Xh

BM;

3. RTnc
h =

 ⊕
M∈X b

h

CM

⊕
 ⊕

M∈X i
h

BM

 .
Proof The first item follows directly by definition. For the second, by (2.3) and Lemma 2,

RTnc
h0 =

τ˜h ∈
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh


=
⊕

M∈Xh

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th,∂T3M
(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
,
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and the second item follows. For the third,

RTnc
h =

τ˜h ∈
⊕

M∈Xh

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh0


=

τ˜h ∈
⊕

M∈X i
h

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψN)T +(divτ˜h,ψN)T = 0, ∀N ∈Xh0


⊕τ˜h ∈

⊕
M∈X b

h

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
=

 ⊕
M∈X i

h

{
τ˜h ∈

⊕
∂T3M

span
{

EΩ
T b˜M

T

}
: ∑

T∈Th

(τ˜h,∇ψM)T +(divτ˜h,ψM)T = 0

}
⊕ ⊕

M∈X b
h

⊕
∂T3M

span
{

EΩ
T b˜M

T

} .
The third item follows. This completes the proof. �

2.1.3. Profiles of BM and CM
Lemma 4 Given a vertex M that is shared by m triangles, dim(BM) = m− 1. There exist a set of
basis functions of BM , each of which is supported on no more than two cells.

Proof The support of ψM consists of m triangles. Denote by Ti, 1 6 i 6 m, the m triangles that share

M. The basis functions in BM then take the form
m

∑
i=1

γib˜M
Ti

, satisfying

m

∑
i=1

[
(γib˜M

Ti
,∇(ψM|Ti))Ti +(γidivb˜M

Ti
,ψM|Ti)Ti

]
= 0. (2.10)

By (2.7), this equation admits (m−1) linearly independent solutions, and every corresponding function
can be supported on two cells. Particularly, we assign the two cells to be adjacent. Figure 2 illustrates
the profile of a basis function.

The function as illustrated in Figure 2, denoted by τ˜, is

τ˜= b˜M
TL

on TL, τ˜=−b˜M
TR

on TR, and τ˜= 0, elsewhere.

By (2.7), on TL, (τ˜,∇ψM)TL + (divτ˜,ψM)TL = 1, (τ˜,∇ψL)TL + (divτ˜,ψL)TL = 0, and (τ˜,∇ψN)TL +
(divτ˜,ψN)TL = 0; on TR, (τ˜,∇ψM)TR + (divτ˜,ψM)TR = −1, (τ˜,∇ψR)TR + (divτ˜,ψR)TR = 0, and
(τ˜,∇ψN)TR + (divτ˜,ψN)TR = 0. Then τ˜ satisfies (2.10). As τ˜ vanishes on other cells, we can obtain

∑
T∈Th

(τ˜,∇ψ)T +(divτ˜,ψ)T = 0 for all ψ ∈ V1
h, thus τ˜ ∈ RTnc

h0.
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FIG. 2. Profile of the field of a global basis functions in BM , supported on two adjacent cells.

According to the profile of Figure 2, a set of linearly independent basis functions of BM can be
given in Figure 3, where M is an interior vertex, and in Figure 4, where M is a boundary vertex. This
completes the proof. �

Lemma 5 Given a vertex A that is shared by m triangles, dim(CA) = m. There exist a set of basis
functions of CA, each of which is supported on just one cell.

The proof of Lemma 5 is straightforward. We refer to Figure 5 for an illustration.

Remark 6 For RTnc
h0, the total amount of the locally supported basis functions is

∑
M∈Xh

[#{T ∈Th : ∂T 3M}−1] = 3# [T ∈Th]−# [M ∈Xh] = dim(RTnc
h0).

For RTnc
h , the total amount of the locally supported basis functions is

∑
M∈X b

h

[#{T ∈Th : ∂T 3M}]+ ∑
M∈X i

h

[#{T ∈Th : ∂T 3M}−1]

= 3# [T ∈Th]−#
[
M ∈X i

h
]
= dim(RTnc

h ).

In any case, T is covered by the supports of no more than m̃+ 6 basis functions in RTnc
h or RTnc

h0,
where m̃ is the number of cells that has at least one vertex in common with T . The generation of a local
stiffness matrix is a local operation, and the assembling of global stiffness matrices can be done by
following the standard routine for finite elements of Ciarlet-type.

Based on the specific profiles of the basis functions, we conclude this subsection by rephrasing
Lemma 3 as the theorem below.
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FIG. 3. Profiles of the fields of linearly independent basis functions of BM , M ∈X i
h .

Theorem 7 The space RTnc
h0 admits a set of linear independent basis functions, which are belonging

to
⊕

M∈Xh
BM and each supported on two adjacent triangles.

The space RTnc
h admits a set of linear independent basis functions; they consist of two types of

functions, Type I and Type II. The functions of Type I are belonging to
⊕

M∈X i
h
BM and each supported

on two adjacent triangles, and the functions of Type II are belonging to
⊕

M∈X b
h

CM and each supported
on one triangle.

2.2. Approximation and stability

2.2.1. Locally-defined projective interpolator for H(div)
Given a triangle T , define the cell-wise interpolator

IRT
T : H(div,T )→ RT(T ) (2.11)
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FIG. 4. Illustration of global basis functions of RTnc
h0 based on a boundary vertex M

FIG. 5. The local basis functions associated with a boundary vertex M can work as global basis functions of RTnc
h .

such that
(IRT

T τ˜,∇v)T +(divIRT
T τ˜,v)T = (τ˜,∇v)T +(divτ˜,v)T , ∀v ∈ P1(T ). (2.12)

By (2.7), IRT
T τ˜=

3

∑
i=1

[
(τ˜,∇λi)T +(divτ˜,λi)T

]
b˜ai

T , and IRT
T σ˜ = σ˜ for σ˜ ∈ RT(T ).

Remark 8 The Crouzeix-Raviart element interpolator ICR
T : H1(T ) → P1(T ), defined such that∫

e ICR
T v =

∫
e v, satisfies the condition (ICR

T v,divτ˜)T +(∇ICR
T v,τ˜)T = (v,divτ˜)T +(∇v,τ˜)T , ∀τ˜∈RT(T ).

On the triangulation Th, define the global interpolator by

IRT
h :

⊕
T∈Th

EΩ
T H(div,T )→ RT(Th), such that (IRT

h τ˜h)T = IRT
T (τ˜h|T ), ∀T ∈Th. (2.13)

Note that IRT
h is defined completely cell by cell; namely, for any two functions v˜h, w˜h ∈⊕

T∈Th
EΩ

T H(div,T ) and any cell T such that v˜h = w˜h on T , it holds that IRT
h v˜h = IRT

h w˜h on T .

Lemma 9 R(IRT
h ,H(div,Ω))⊂ RTnc

h and R(IRT
h ,H0(div,Ω))⊂ RTnc

h0.

Proof Given σ˜ ∈ H(div,Ω), (σ˜,∇vh) + (divσ˜,vh) = 0 for any vh ∈ V1
h0. Thus for any vh ∈ V1

h0,

∑
T∈Th

(∇vh,IRT
h σ˜)T + (vh,divIRT

h σ˜)T = ∑
T∈Th

(∇vh,σ˜)T + (vh,divσ˜)T = 0. Namely IRT
h σ˜ ∈ RTnc

h , and

thus R(IRT
h ,H(div,Ω))⊂ RTnc

h . Similarly R(IRT
h ,H0(div,Ω))⊂ RTnc

h0. This completes the proof. �
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Remark 10 Different from most existing interpolators, IRT
h σ˜ is not defined in the form of ∑ li(σ˜)τ˜i,

where τ˜i is each a global basis function of RTnc
h , and li is each a functional on σ˜ . Indeed, according

to theory of Zeng et al. (2023), as the global basis functions of RTnc
h may not be locally linearly

independent, interpolator defined as ∑ li(σ˜)τ˜i with li depends on the local information of σ˜ cannot
be projective.

2.2.2. Approximation and stability
Lemma 11 With a constant C depending on the shape regularity of T ,

1. stabilities:
‖divIRT

T σ˜‖0,T 6 ‖divσ˜‖0,T , and ‖IRT
T σ˜‖div,T 6C‖σ˜‖div,T ;

2. optimal approximation:

‖div(σ˜− IRT
T σ˜)‖0,T = inf

τ˜∈RT(T )‖div(σ˜−τ˜)‖0,T , and ‖σ˜− IRT
T σ˜‖div,T 6C inf

τ˜∈RT(T )‖σ˜−τ˜‖div,T .

Proof Evidently, divIRT
T σ˜ is the L2(T ) projection of divσ˜ onto piecewise constant space; therefore,

‖divIRT
T σ˜‖0,T 6 ‖divσ˜‖0,Ω. Now we use P0

T for the L2(T ) projection to constant, and P˜0
T :=

(P0
T )

2. Then for any τ˜ ∈ RT(T ), we have by Poincaré inequality, ‖τ˜− P˜0
T τ˜‖0,T 6 ChT‖∇τ˜‖0,T =

ChT/
√

2‖divτ˜‖0,T . Meanwhile, for any v ∈ P1(T ), ‖v−P0
T v‖0,T 6 ChT‖∇v‖0,T . For any v ∈ P1(T ),(

IRT
T σ˜,∇v

)
T +(divIRT

T σ˜,v)T =(σ˜,∇v)T +(divσ˜,v)T , and (divIRT
T σ˜,P0

T v)T =(divσ˜,P0
T v)T . Therefore,(

P˜0
T IRT

T σ˜,∇v
)

T = (σ˜,∇(v−P0
T v))T + (divσ˜,v−P0

T v)T . It follows that ‖P˜0
T IRT

T σ˜‖0,T 6 C(‖σ˜‖0,T +

hT‖divσ˜‖0,T ). Further ‖IRT
T σ˜‖0,T 6C(‖σ˜‖0,T +hT‖divσ˜‖0,T ), and ‖IRT

T σ˜‖div,T 6C‖σ˜‖div,T .
The optimal approximation follows then from the stability and by the standard procedure. �

Moreover, as the global interpolator is defined completely piecewise, global stabilities hold and

‖σ˜− IRT
h σ˜‖divh 6C inf

τ˜h∈RT(Th)
‖σ˜− τ˜h‖divh , (2.14)

where C depends on the regularity of the triangulation only.
Further, the Poincaré inequalities hold for RTnc

h and RTnc
h0.

Lemma 12 Given τ˜h ∈ RTnc
h , there is σ˜h ∈ RTnc

h , such that divhσ˜h = divhτ˜h, and ‖σ˜h‖0,Ω 6
C‖divhτ˜h‖0,Ω.

Proof Note that divhτ˜h is piecewise constant, and there exists a τ˜ ∈ H(div,Ω), such that divτ˜ =

divhτ˜h, and ‖τ˜‖div,Ω 6 C‖divτ˜‖0,Ω. Set σ˜h = IRT
h τ˜, then divhσ˜h = divτ˜, and ‖σ˜h‖divh 6 C‖τ˜‖div 6

C‖divhτ˜h‖0,Ω. This completes the proof. �

Remark 13 Evidently, RTnc
h ⊃ V˜RT

h , and thus the approximation and stability properties of RTnc
h

follow. Though, we present direct proofs of them by the aid of the interpolator. In some sense, both the
two properties established here are optimal.
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2.3. Discretization of the variational problems

2.3.1. Discretization of the H(div) elliptic problem
We consider the problem: given f˜ ∈ L˜2(Ω), find σ˜ ∈ H(div,Ω), such that

(divσ˜,divτ˜)+(σ˜,τ˜) = ( f˜,τ˜), ∀τ˜ ∈ H(div,Ω). (2.15)

It follows that divσ˜ ∈ H1
0 (Ω), and f˜=−∇divσ˜+σ˜ .

We here consider the discretization of (2.15): to find σ˜h ∈ RTnc
h , such that

(divhσ˜h,divhτ˜h)+(σ˜h,τ˜h) = ( f˜,τ˜h), ∀τ˜h ∈ RTnc
h . (2.16)

Immediately (2.15) and (2.16) are well-posed. Denote ‖τ˜h‖divh := (‖τ˜h‖2
0 +‖divhτ˜h‖2

0)
1/2.

Theorem 14 Let σ˜ and σ˜h be the solutions of (2.15) and (2.16), respectively. Then

‖σ˜−σ˜h‖divh 6 2 inf
τ˜h∈RTnc

h

‖σ˜− τ˜h‖divh + inf
vh∈V1

h0

‖divσ˜− vh‖1,Ω. (2.17)

Proof By Strang’s lemma (cf. Ciarlet (1978)),

‖σ˜−σ˜h‖divh 6 2 inf
τ˜h∈RTnc

h

‖σ˜− τ˜h‖divh + sup
τ˜h∈RTnc

h

(divσ˜,divhτ˜h)+(∇divσ˜,τ˜h)

‖τ˜h‖divh

.

For any vh ∈ V1
h0,

(divσ˜,divhτ˜h)+(∇divσ˜,τ˜h) = (divσ˜− vh,divhτ˜h)+(∇(divσ˜− vh),τ˜h)6 ‖divσ˜− vh‖1,Ω‖τ˜h‖divh .

Then (2.17) follows. �

By the abstract estimation, the precise convergence order can be figured out with respect to the
assumption on the regularity of the solution.

2.3.2. Discretization of the Darcy problem
We consider the problem: given f ∈ L2(Ω), find (u,σ˜) ∈ L2(Ω)×H(div,Ω), such that{

(σ˜,τ˜) +(u,divτ˜) = 0 ∀τ˜ ∈ H(div,Ω),
(divσ˜,v) = ( f ,v) ∀v ∈ L2(Ω).

(2.18)

The discretization is to find (uh,σ˜h) ∈P0(Th)×RTnc
h , such that{

(σ˜h,τ˜h) +(uh,divhτ˜h) = 0 ∀τ˜h ∈ RTnc
h ,

(divhσ˜h,vh) = ( f ,vh) ∀vh ∈P0(Th).
(2.19)

Here P0(Th) is the space of piecewise constant functions. Evidently, (2.19) is well-posed.
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Theorem 15 Let (u,σ˜) and (uh,σ˜h) be the solutions of (2.18) and (2.19), respectively. Then

‖u−uh‖0,Ω +‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ inf
sh∈V1

h0

‖u− sh‖1,Ω

 .
Proof By the Strang lemma for saddle point problem (cf., e.g., Boffi et al. (2013, Proposition5.5.6)),

‖u−uh‖0,Ω+‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ sup
τ˜h∈RTnc

h

(σ˜,τ˜h)+(u,divhτ˜h)

‖τ˜h‖divh

 .
Note that σ˜ = ∇u, and we have, for any sh ∈ V1

h0,

(σ˜,τ˜h)+(u,divhτ˜h) = (∇u−∇sh,τ˜h)+(u− sh,divhτ˜h)6 ‖u− sh‖1,Ω‖τ˜h‖divh .

It follows then

‖u−uh‖0,Ω +‖σ˜−σ˜h‖divh 6C

 inf
vh∈P0(Th)

τ˜h∈RTnc
h

(‖u− vh‖0,Ω +‖σ˜− τ˜h‖divh)+ inf
sh∈V1

h0

‖u− sh‖1,Ω

 .
This completes the proof. �

2.4. Numerical experiments

We show the implementability of RTnc
h and its difference from the classical Raviart-Thomas element

by two series of experiments.

2.4.1. Implementability of the space RTnc
h

Firstly, we use RTnc
h to solve numerically the boundary value problems (2.15) and (2.18). We use the

unit square (0,1)2 as the computation domain, and we choose properly the source terms, such that

• for (2.15), the exact solution is

σ˜ = (−2cos(πx)sin(πy),sin(πx)cos(πy))>;

• for (2.18), the exact solution is

u = sin(πx)sin(πy), and σ˜ = ∇u.

We construct two series of triangulations, being crisscross (cf. Figure 6, left) and irregular (cf. Figure
6, right), respectively. The computational results are recorded in Figures 7 and 8.

On the two series of triangulations, we also use RTnc
h ×P0(Th) to solve the eigenvalue problem of

(2.18), which is to find (λ ,u,σ˜) ∈ R×L2(Ω)×H(div,Ω), such that{
(σ˜,τ˜) +(u,divτ˜) = 0 ∀τ˜ ∈ H(div,Ω),
(divσ˜,v) = λ π2 (u,v) ∀v ∈ L2(Ω).

(2.20)

Note that on unit square, the eigenvalues of (2.20) take the values m2+n2, m,n ∈N+. Here we separate
the effect of π2 so that the results are easy to read. The respective eigenvalue problems of (2.15) and
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FIG. 6. The initial triangulation of two series of triangulations. Left: crisscross; right: irregular.

FIG. 7. Convergence process for (2.15). Left: on crisscross triangulations; right: on irregular triangulations.

(2.18) are essentially equivalent to each other. The 10 smallest computed eigenvalues of (2.20) on each
series of grids are recorded in Tables 1 and 2. In the tables, we use “L” to denote the level of each grid,
and use ↘/↗ to denote the decreasing/increasing trend of the computed eigenvalues as the grids are
refined and refined. The computed eigenvalues converge to the exact eigenvalues nicely. Moreover, it
can be seen that the RTnc

h scheme for (2.20) provides upper bounds to the exact eigenvalues.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.619 9.727 9.727 9.727 19.123 29.181 29.181 29.181 29.181 29.181
2 2.128 5.982 5.982 10.477 14.547 14.547 20.650 20.650 32.039 38.907
3 2.031 5.223 5.223 8.511 11.009 11.009 14.480 14.480 20.137 20.137
4 2.008 5.055 5.055 8.122 10.242 10.242 13.345 13.345 17.739 17.739
5 2.002 5.014 5.014 8.030 10.060 10.060 13.085 13.085 17.182 17.182

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 1 Computed eigenvalues by RTnc
h scheme on crisscross grids.
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FIG. 8. Convergence process for (2.18). Left: on crisscross triangulations; right: on irregular triangulations.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.474 6.921 7.575 12.150 17.167 20.663 21.687 23.653 25.825 26.359
2 2.123 5.636 5.770 9.850 12.660 13.141 18.222 18.582 24.122 25.578
3 2.031 5.164 5.199 8.474 10.712 10.778 14.307 14.357 18.985 19.218
4 2.008 5.041 5.050 8.119 10.182 10.195 13.325 13.336 17.520 17.565
5 2.002 5.010 5.013 8.030 10.046 10.049 13.081 13.084 17.132 17.142

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 2 Computed eigenvalues by RTnc
h scheme on irregular grids.

2.4.2. Comparison with the classical Raviart-Thomas element

FIG. 9. The initial triangulations. Left: regular; middle: fish bone; right: union Jack.

We here show the experiments of solving the eigenvalue problem (2.20) with the classical Raviart-
Thomas element scheme on the crisscross triangulation, the regular triangulation (cf. Figure 9, left),
the fish-bone triangulation (cf. Figure 9, middle), and the union Jack triangulation (cf. Figure 9, right).
The 10 smallest computed eigenvalues on each series of grids are recorded in Tables 3, 4, 5 and 6. It
can be seen that the classical (lowest-degree) Raviart-Thomas element might provide upper or lower
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bound to different eigenvalues, sensitive to the grid as well.2 Numerical experiments on these special
triangulations which are easy to check are included.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 1.858 4.158 4.158 8.254 9.727 12.042 12.042 12.733 14.590 14.590
2 1.965 4.893 4.893 7.431 9.850 9.850 11.731 11.731 14.847 15.317
3 1.991 4.975 4.975 7.862 9.986 9.986 12.712 12.712 17.071 17.071
4 1.998 4.994 4.994 7.966 9.998 9.998 12.929 12.929 17.024 17.024
5 1.999 4.998 4.998 7.991 9.999 9.999 12.982 12.982 17.006 17.006

↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↘ ↘

TABLE 3 Computed eigenvalues by the classical Raviart-Thomas
element scheme on crisscross grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.110 3.542 4.863 9.727 9.727 12.021 13.453 14.590 — —
2 2.032 4.834 5.096 8.077 8.957 9.414 11.107 11.377 12.242 14.729
3 2.008 4.964 5.026 8.119 9.798 9.815 12.896 13.422 16.153 16.196
4 2.002 4.991 5.007 8.033 9.951 9.952 12.983 13.113 16.791 16.799
5 2.001 4.998 5.002 8.009 9.988 9.988 12.996 13.029 16.947 16.950

↘ ↗ ↘ ↘ ↗ ↗ ↗ ↘ ↗ ↗

TABLE 4 Computed eigenvalues by the classical Raviart-Thomas
element scheme on regular grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.084 4.127 4.127 9.727 9.727 12.895 12.895 14.590 — —
2 2.032 4.943 4.959 8.337 8.881 8.989 11.359 11.501 12.716 13.188
3 2.008 4.993 4.995 8.126 9.788 9.800 13.153 13.166 16.107 16.159
4 2.002 4.999 4.999 8.034 9.950 9.951 13.047 13.048 16.790 16.794
5 2.001 5.000 5.000 8.009 9.988 9.988 13.012 13.012 16.948 16.948

↘ ↗ ↗ ↘ ↗ ↗ ↘ ↘ ↗ ↗

TABLE 5 Computed eigenvalues by the classical Raviart-Thomas
element scheme on fish-bone grids.

The RTnc
h scheme for (2.20) is further carried out on the regular triangulation, fish-bone

triangulation and the union Jack triangulation, and the 10 smallest computed eigenvalues on each series
of grids are recorded in Tables 7, 8 and 9. It can be seen that, in all these experiments, again, the RTnc

h
scheme for (2.20) provides upper bounds for all the eigenvalues. The robustness is improved with RTnc

h .
This will be further investigated in future.

2 We do not think it is now found for the first time that the classical (lowest-degree) Raviart-Thomas element scheme cannot be
expected to provide a certain bounds to the exact eigenvalues, though we do not find a referred literature.
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L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.432 4.127 4.127 7.295 9.727 12.895 12.895 14.590 — —
2 2.030 4.925 4.925 8.315 9.727 9.727 11.501 11.501 13.497 13.497
3 2.008 4.993 4.993 8.120 9.786 9.786 13.133 13.133 16.097 16.097
4 2.002 4.999 4.999 8.033 9.950 9.950 13.047 13.047 16.789 16.789
5 2.001 5.000 5.000 8.009 9.988 9.988 13.012 13.012 16.948 16.948

↘ ↗ ↗ ↘ ↗ ↗ ↘ ↘ ↗ ↗

TABLE 6 Computed eigenvalues by the classical Raviart-Thomas
element scheme on union Jack grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 3.648 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.396 6.748 8.210 13.339 19.454 21.970 23.399 33.381 36.189 58.361
3 2.095 5.414 5.692 9.432 12.082 12.343 15.678 18.242 23.299 23.656
4 2.024 5.102 5.166 8.372 10.494 10.510 13.684 14.246 18.387 18.430
5 2.006 5.026 5.041 8.094 10.122 10.123 13.173 13.306 17.335 17.344

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 7 Computed eigenvalues by RTnc
h scheme on regular grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 3.648 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.395 7.247 7.455 14.590 17.639 20.437 26.875 32.313 36.332 58.361
3 2.095 5.537 5.552 9.559 11.969 12.131 16.941 17.131 22.453 23.322
4 2.024 5.133 5.134 8.380 10.485 10.497 13.960 13.973 18.334 18.398
5 2.006 5.033 5.033 8.094 10.121 10.122 13.239 13.240 17.334 17.339

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 8 Computed eigenvalues by RTnc
h scheme on fish-bone grids.

L λ 1
h λ 2

h λ 3
h λ 4

h λ 5
h λ 6

h λ 7
h λ 8

h λ 9
h λ 10

h

1 2.918 14.590 14.590 14.590 14.590 14.590 14.590 14.590 — —
2 2.366 7.274 7.274 11.672 19.454 19.454 29.531 29.531 43.615 58.361
3 2.087 5.505 5.505 9.466 11.963 11.963 16.852 16.852 22.973 22.973
4 2.022 5.121 5.121 8.349 10.447 10.447 13.893 13.893 18.258 18.258
5 2.005 5.030 5.030 8.086 10.109 10.109 13.218 13.218 17.301 17.301

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

TABLE 9 Computed eigenvalues by RTnc
h scheme on union Jack grids.

3. A nonconforming framework for finite element exterior calculus

3.1. Nonconforming finite element spaces for HΛk in Rn

Let Gh be a simplicial subdivision of Ω. For 06 k 6 n−1, we define finite element spaces for HΛk by

Wnc
h Λ

k :=
{

ωh ∈P−
1 Λ

k(Gh) : 〈ωh,δ k+1ηh〉L2Λk −〈dk
hωh,ηh〉L2Λk+1 = 0, ∀ηh ∈W∗

h0Λ
k+1
}
, (3.1)
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where dk
h denotes the cell-by-cell operation of dk, and, for H0Λk,

Wnc
h0Λ

k :=
{

ωh ∈P−
1 Λ

k(Gh) : 〈ωh,δ k+1ηh〉L2Λk −〈dk
hωh,ηh〉L2Λk+1 = 0, ∀ηh ∈W∗

hΛ
k+1
}
. (3.2)

Set
Wnc

h Λ
n := P0Λ

n(Gh), and Wnc
h0Λ

n := Wnc
h Λ

n∩L2
0Λ

n(Ω). (3.3)

Remark 16 Note that Wnc
h Λ0 and Wnc

h0Λ0 are the lowest-degree Crouzeix-Raviart element spaces. If
further n = 1, Wnc

h Λ0 and Wnc
h0Λ0 coincide with the respective continuous linear element spaces.

Remark 17 Associated with the definitions, by (1.3), it holds that, for example,

W∗
hΛ

k =
{

µh ∈P∗,−
1 Λ

k(Gh) : 〈δ kµh,τh〉L2Λk−1 −〈µh,dk−1
h τh〉L2Λk = 0, ∀τh ∈Wnc

h0Λ
k−1
}
.

By the same virtue of Theorem 7, noting (1.3), we can prove theorem below.

Theorem 18 The space Wnc
h0Λk admits a set of linear independent basis functions, which are each

supported on two adjacent simplices.
The space Wnc

h Λk admits a set of linear independent basis functions; they consist of two types of
functions, Type I and Type II. The functions of Type I are each supported on two adjacent simplices, and
the functions of Type II are each supported on one simplex.

In the sequel, we use F G for a family of shape regular subdivisions of Ω.

3.1.1. Locally defined interpolator and optimal approximation
Similar to (2.11), we define a local interpolator Idk

T : HΛk(T )→P−
1 Λk(T ), 06 k 6 n−1, such that,

〈Idk

T ω,δ k+1η〉L2Λk(T )−〈d
kIdk

T ω,η〉L2Λk+1(T ) = 〈ω,δ k+1η〉L2Λk(T )−〈d
k
ω,η〉L2Λk+1(T ),

for any η ∈P∗,−
1 Λk+1(T ), and, following (2.13), define a global interpolator

Idk

h :
⊕

T∈Gh

EΩ
T HΛ

k(T )→P−
1 Λ

k(Gh), by (Idk

h ω)|T = Idk

T (ω|T ), ∀T ∈ Gh.

Set Idn

T the L2(T ) projection to P0Λn on T , and Idn

h the L2(Ω) projection to P0Λn(Gh). Again all the
interpolators are local ones.

Denote ‖µh‖dk
h

:= (‖dk
hµh‖2

L2Λk+1 +‖µh‖2
L2Λk)

1/2. The proofs of the two lemmas below are the same
as that of Lemma 9 and Lemma 11, and are omitted here.

Lemma 19 R(Idk

h ,HΛk)⊂Wnc
h Λk and R(Idk

h ,H0Λk)⊂Wnc
h0Λk.

Lemma 20 With Ck,n uniform for F G , for Gh ∈F G and ω ∈
⊕

T∈Gh

EΩ
T HΛ

k(T ),

‖ω− Idk

h ω‖dk
h
6Ck,n inf

ηh∈P−1 Λk(Gh)
‖ω−ηh‖dk

h
.
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3.1.2. Uniform discrete Poincaré inequalities
As generally R(dk

h,W
nc
h Λk) 6⊂ HΛk+1(Ω), we cannot simply repeat the proof of Lemma 12. We adopt

an indirect approach by Lemma 25, which can be viewed a finite-dimensional analogue of the closed
range theorem by a comparison to Theorem 44 in Section B.

Let X andY be two Hilbert spaces. For (T,D) : X→Y a closed operator, denote

DyT := {v ∈ D : 〈v,w〉X = 0, ∀w ∈N (T,D)} .

Define the Poincaré inequality’s criterion of (T,D) as

pic(T,D) :=

 sup
06=v∈DyT

‖v‖X

‖Tv‖Y
, if DyT 6= {0} ;

0, if DyT = {0} .
(3.4)

If pic(T,D) is finite, then the Poincaré inequality holds for (T,D). It is further indeed the best
constant of the Poincaré inequality. The index can be used for a criterion for closed range. We refer to,
e.g., Arnold (2018, Lemma 3.6) for a proof of Lemma 21 up to little technical modification.

Lemma 21 For (T,D) : X→Y a closed operator, R(T,D) is closed if and only if pic(T,D)<+∞.

The main estimation is the theorem below, which presents the uniform Poincaré inequality on the
orthogonal complement of N (dk

h,W
nc
h Λk) in Wnc

h Λk.

Theorem 22 With a constant Ck,n uniform for F G ,

pic(dk
h,W

nc
h Λ

k)6Ck,n.

We firstly present three lemmas below, and postpone their technical proofs to appendix Section A.

Lemma 23 pic(dk
h,W

nc
h Λk)6 pic(δ k+1,W∗

h0Λk+1)+2pic(dk
h,P

−
1 Λk(Gh)).

Lemma 24 pic(dk
h,P

−
1 Λk(Gh)) = O(h).

Lemma 25
∣∣pic(δ k+1,W∗

h0Λk+1)−pic(dk
h,W

nc
h Λk)

∣∣= O(h).

Proof of Theorem 22 It is well known that (c.f., e.g., Arnold et al. (2006)), there exists a constant
Ck,n such that pic(dk,WhΛk) 6 Ck,n, and, pic(dk,Wh0Λk) 6 Ck,n, which implies immediately that
pic(δ k+1,W∗

h0Λk+1) and pic(δ k+1,W∗
hΛk+1) are uniformly bounded. It follows then pic(dk

h,W
nc
h Λk)6

Ck,n. �
Similarly, pic(dk

h0,W
nc
h Λk)6Ck,n.

3.1.3. Finite element schemes for elliptic variational problems
Consider the elliptic variational problem: given f ∈ L2Λk, find ω ∈ HΛk, such that

〈dk
ω,dk

µ〉L2Λk+1 + 〈ω,µ〉L2Λk = 〈f,µ〉L2Λk , ∀µ ∈ L2
Λ

k. (3.5)

It follows that dkω ∈ H∗0 Λk+1, and δ k+1dkω +ω = f.
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We consider its finite element discretization: find ω ∈Wnc
h Λk, such that

〈dk
hωh,dk

hµh〉L2Λk+1 + 〈ωh,µh〉L2Λk = 〈f,µh〉L2Λk , ∀µh ∈Wnc
h Λ

k. (3.6)

Immediately (3.5) and (3.6) are well-posed.

Theorem 26 Let ω and ωh be the solutions of (3.5) and (3.6), respectively.

‖ω−ωh‖dk
h
6 2 inf

µh∈Wnc
h

‖ω−µh‖dk
h
+ inf

τh∈W∗h0Λk+1
‖dk

ω− τh‖δ k+1
.

The proof is the same as that of Theorem 14, and is omitted here.

3.2. Discrete Helmholtz-Hodge decompositions of P0Λk(Gh)

Theorem 27 (Discrete Helmholtz decomposition) Orthogonal in L2Λk(Ω), for 16 k 6 n,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k) = R(dk−1
h ,Wnc

h0Λ
k−1)⊕⊥N (δ k,W∗

hΛ
k);

for 06 k 6 n−1,

P0Λ
k(Gh) = N (dk

h,W
nc
h Λ

k)⊕⊥R(δ k+1,W∗
h0Λ

k+1) = N (dk
h,W

nc
h0Λ

k)⊕⊥R(δ k+1,W∗
hΛ

k+1).

Proof We are going to show, for 16 k 6 n,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k),

and other assertions follow the same way.
By construction, P0Λk(Gh) contains R(dk−1

h ,Wnc
h Λk−1)⊕⊥N (δ k,W∗

h0Λk). Conversely, let σh ∈
P0Λk(Gh)	⊥R(dk−1

h ,Wnc
h Λk−1). Then for any µh ∈Wnc

h Λk−1,

∑
T∈Gh

〈σh,dk−1
µh〉L2Λk(T )+ 〈δ kσh,µh〉L2Λk−1(T ) = 〈σh,dk−1

h µh〉L2Λk = 0.

Namely σh ∈W∗
h0Λk and further σh ∈N (δ k,W∗

h0Λk). This completes the proof. �

By noting that, for 16 k 6 n−1,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥N (δ k,W∗
h0Λ

k) = N (dk
h,W

nc
h Λ

k)⊕⊥R(δ k+1,W∗
h0Λ

k+1),

we have immediately that, for 16 k 6 n−1,

R(dk−1
h ,Wnc

h Λ
k−1)⊂N (dk

h,W
nc
h Λ

k)⇐⇒R(δ k+1,W∗
h0Λ

k+1)⊂N (δ k,W∗
h0Λ

k). (3.7)

Further, we can construct the discrete Poincaré-Lefschetz duality identities below.
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Theorem 28 (Discrete Poincaré-Lefschetz duality) For 16 k 6 n−1,

N (dk
h,W

nc
h Λ

k)	⊥R(dk−1
h ,Wnc

h Λ
k−1) = N (δ k,W∗

h0Λ
k)	⊥R(δ k+1,W∗

h0Λ
k+1)

and

N (dk
h,W

nc
h0Λ

k)	⊥R(dk−1
h ,Wnc

h0Λ
k−1) = N (δ k,W∗

hΛ
k)	⊥R(δ k+1,W∗

hΛ
k+1).

Denote Hnc
h Λk := N (dk

h,W
nc
h Λk) 	⊥ R(dk−1

h ,Wnc
h Λk−1) and Hnc

h0Λk := N (dk
h,W

nc
h0Λk) 	⊥

R(dk−1
h ,Wnc

h0Λk−1). We have the discrete orthogonal decomposition of P0Λk(Gh) below.

Theorem 29 (Discrete Hodge decomposition) For 16 k 6 n−1,

P0Λ
k(Gh) = R(dk−1

h ,Wnc
h Λ

k−1)⊕⊥H∗h0Λ
k(=Hnc

h Λ
k)⊕⊥R(δ k+1,W∗

h0Λ
k+1)

= R(dk−1
h ,Wnc

h0Λ
k−1)⊕⊥Hnc

h0Λ
k(=H∗hΛ

k)⊕⊥R(δ k+1,W∗
hΛ

k+1). (3.8)

Remark 30 Within classical FEEC theory, as demonstrated in Arnold (2018, (5.6)), discrete Hodge
decompositions for HΛk finite element spaces “V k

h ”(identical to WhΛk in the present paper) are
established, allowing for in-contractible domains, which reads V k

h = Bk
h	⊥Hk

h	⊥B∗k,h, where B∗k,h is
the range of a globally defined operator d∗jh. According to (3.7), similar decompositions can be rebuilt
associated with Wnc

h Λk. Contrastly, Theorem 29 is of a discretization of L2Λk for both contractible and
in-contractible domains. Notably, all discrete operators involved are locally defined, acting cell by cell.

3.3. Commutative diagrams

Lemma 31 For any µ ∈ HΛk(T ), 06 k 6 n−1, Idk+1

T dkµ = dkIdk

T µ .

Proof Since dk+1dkµ = 0, dk+1Idk+1

T dkµ = 0. Further, Idk+1

T dkµ ∈P0Λk+1. Then,

〈Idk+1

T dk
µ,δ k+2η〉L2Λk+1(T )−〈d

k+1Idk+1

T dk
µ,η〉L2Λk+2(T )

= 〈dk
µ,δ k+2η〉L2Λk+1(T )−〈d

k+1dk
µ,η〉L2Λk+2(T ) = 〈d

k
µ,δ k+2η〉L2Λk+1(T )−〈µ,δ k+1δ k+2η〉L2Λk(T )

= 〈dkIdk

T µ,δ k+2η〉L2Λk+1(T )−〈I
dk

T µ,δ k+1δ k+2η〉L2Λk(T ), ∀η ∈P∗,−
1 Λ

k+2(T ).

Here we use underline to label the vanishing terms. Therefore, Idk+1

T dkµ = dkIdk

T µ . �

Immediately we have, for any µ ∈ HΛk(Ω), Idk+1

h dkµ = dk
hI

dk

h µ , 06 k 6 n−1.
We summarize all above to theorem below.
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Theorem 32 The following de Rham complexes commute:

R inc−→ HΛ0 d0
−→ HΛ1 d1

−→ ...
dn−1
−−→ HΛn

↓ Id0

h ↓ Id1

h ↓ Idn

h

R inc−→ Wnc
h Λ0 d0

h−→ Wnc
h Λ1 d1

h−→ ...
dn−1

h−−→ Wnc
h Λn

; (3.9)

0 −→ H0Λ0 d0
−→ H0Λ1 d1

−→ ...
dn−1
−−→ H0Λn

↓ Id0

h ↓ Id1

h ↓ Idn

h

0 −→ Wnc
h0Λ0 d0

h−→ Wnc
h0Λ1 d1

h−→ ...
dn−1

h−−→ Wnc
h0Λn

. (3.10)

Remark 33 Given Theorem 28 the discrete Poincaré-Lefschetz duality, we are actually led to that,
once one of the four complexes in (3.9) and (3.10) is exact, so are the three others.

4. Discretization of the Hodge Laplace problem with nonconforming finite element spaces

In this section, we study the discretizations of the Hodge Laplace problem: given f ∈ L2Λk, with Pk
H the

L2 projection to HΛk, find ω ∈ HΛk(Ω)∩H∗0 Λk(Ω) with dkω ∈ H∗0 Λk+1(Ω), such that

ω ⊥HΛ
k(Ω), and δ k+1dk

ω +dk−1
δ kω = f−Pk

Hf. (4.1)

The primal weak formulation is: find ω ∈ HΛk ∩H∗0 Λk, such that{
〈ω,ς〉L2Λk = 0, ∀ς ∈HΛk,

〈dkω,dkµ〉L2Λk+1 + 〈δ kω,δ kµ〉L2Λk−1 = 〈f−Pk
Hf,µ〉L2Λk , ∀µ ∈ HΛk(Ω)∩H∗0 Λk(Ω).

(4.2)

A standard mixed formulation based on ω ∈ HΛk is generally used (Arnold, 2018), which seeks
(ωp,σp,ϑ p) ∈ HΛk×HΛk−1×HΛk, such that, for (µ,τ,ς) ∈ HΛk×HΛk−1×HΛk,

〈ωp,ς〉L2Λk = 0
〈σp,τ〉L2Λk+1 −〈ωp,dk−1τ〉L2Λk = 0

〈ϑ p,µ〉L2Λk +〈dk−1σp,µ〉L2Λk +〈dkωp,dkµ〉L2Λk−1 = 〈f,µ〉L2Λk

. (4.3)

In this section, we investigate the application of the nonconforming finite element spaces to the
discretizations of this classical formulation and to a new “completely” mixed formulation.

Remark 34 Here we call (4.3) “primal” mixed formulation, and use the supscript p to label that.
Actually, for a function in HΛk ∩H∗0 Λk, (4.3) sets ωp ∈ HΛk, and impose the continuity that it also
belongs to H∗0 Λk in a dual way. It is natural to set ω ∈ H∗0 Λk and to impose the continuity that it also
belongs to HΛk in a dual way. Namely, we are to set an auxiliary mixed formulation, which seeks
(ωd,ζ d,ϑ d) ∈ H∗0 Λk×H∗0 Λk+1×H∗0Λk, such that, for (µ,η ,ς) ∈ H∗0 Λk×H∗0 Λk+1×H∗0Λk,

〈ωd,ς〉L2Λk = 0
〈ζ d,η〉L2Λk+1 −〈ωd,δ k+1η〉L2Λk = 0

〈ϑ d,µ〉L2Λk +〈δ k+1ζ d,µ〉L2Λk +〈δ kωd,δ kµ〉L2Λk−1 = 〈f,µ〉L2Λk

. (4.4)

In the aforementioned sense, this mixed formulation can be viewed as a dual one of (4.3).
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Conforming finite elements have been used for discretization of (4.3); they are naturally used
for (4.4). For example, we can consider the discretization for (4.4): to find (ωd

h ,ζ
d
h ,ϑ

d
h ) ∈W∗

h0Λk×
W∗

h0Λk+1×H∗h0Λk, such that, for (µh,ηh,ςh) ∈W∗
h0Λk×W∗

h0Λk+1×H∗h0Λk,
〈ωd,ς〉L2Λk = 0

〈Pk+1
h ζ d

h ,P
k+1
h ηh〉L2Λk+1 −〈ωd

h ,δ k+1ηh〉L2Λk = 0
〈ϑ d

h ,µh〉L2Λk +〈δ k+1ζ d
h ,µh〉L2Λk +〈δ kωd

h ,δ kµh〉L2Λk−1 = 〈f,Pk
hµh〉L2Λk

. (4.5)

The well-posedness of (4.5) is the same as that of (4.8) below. The convergence analysis of (4.5)
can be done in a classical way; precisely, denote by (ω̄d

h , ζ̄
d
h , ϑ̄

d
h ) ∈W∗

h0Λk×W∗
h0Λk+1×H∗h0Λk and

(ω̃d
h , ζ̃

d
h , ϑ̃

d
h ) ∈W∗

h0Λk×W∗
h0Λk+1×H∗h0Λk the respective solutions of the auxiliary problems

〈ω̄d,ς〉L2Λk = 0
〈ζ̄ d

h ,ηh〉L2Λk+1 −〈ω̄d
h ,δ k+1ηh〉L2Λk = 0

〈ϑ̄ d
h ,µh〉L2Λk +〈δ k+1ζ̄ d

h ,µh〉L2Λk +〈δ kω̄d
h ,δ kµh〉L2Λk−1 = 〈Pk

hf,µh〉L2Λk

, (4.6)

and 
〈ω̃d,ς〉L2Λk = 0

〈ζ̃ d
h ,ηh〉L2Λk+1 −〈ω̃d

h ,δ k+1ηh〉L2Λk = 0
〈ϑ̃ d

h ,µh〉L2Λk +〈δ k+1ζ̃ d
h ,µh〉L2Λk +〈δ kω̃d

h ,δ kµh〉L2Λk−1 = 〈f,µh〉L2Λk

. (4.7)

It follows by standard procedure that

‖(ωd
h ,ζ

d
h ,ϑ

d
h )− (ω̄d

h , ζ̄
d
h , ϑ̄

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Ch‖Pk

hf‖L2Λk 6Ch‖f‖L2Λk ,

and
‖(ω̄d

h , ζ̄
d
h , ϑ̄

d
h )− (ω̃d

h , ζ̃
d
h , ϑ̃

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Ch‖f‖L2Λk .

Meanwhile, the classical analysis (cf. Arnold et al. (2006, Theorem 7.10 and its proof)) holds as

‖(ωd,ζ d,ϑ d)− (ω̃d
h , ζ̃

d
h , ϑ̃

d
h )‖H∗Λk×H∗Λk+1×L2Λk 6Chs‖f‖L2Λk ,

if the domain Ω is s-regular. The convergence analysis of (4.5) then follows.

4.1. Nonconforming discretization of (4.3)

By the newly designed nonconforming finite element spaces, the discrete problem is: to find
(ωp

h ,σ
p
h ,ϑ

p
h ) ∈Wnc

h Λk×Wnc
h Λk−1×Hnc

h Λk, such that, for (µh,τh,ςh) ∈Wnc
h Λk×Wnc

h Λk−1×Hnc
h Λk,

〈ωp
h ,ςh〉L2Λk = 0

〈Pk−1
h σ

p
h ,P

k−1
h τh〉L2Λk+1 −〈ωp

h ,d
k−1
h τh〉L2Λk = 0

〈ϑ p
h ,µh〉L2Λk +〈dk−1

h σ
p
h ,µh〉L2Λk +〈dk

hω
p
h ,d

k
hµh〉L2Λk−1 = 〈f,Pk

hµh〉L2Λk

. (4.8)

To verify the well-posedness of (4.8), following (Arnold, 2018, Section 4.2.2), writing Xh :=
Wnc

h Λk×Wnc
h Λk−1×Hnc

h Λk, with ‖(µh,τh,ςh)‖Xh := ‖µh‖dk
h
+‖τh‖dk−1

h
+‖ςh‖L2Λk , denoting on Xh×Xh

Bh((ωh,σh,ϑh),(µh,τh,ςh)) := 〈Pk−1
h σ

p
h ,P

k−1
h τh〉L2Λk+1 −〈ωp

h ,d
k−1
h τh〉L2Λk

−〈ϑ p
h ,µh〉L2Λk −〈dk−1

h σ
p
h ,µh〉L2Λk −〈dk

hω
p
h ,d

k
hµh〉L2Λk−1 −〈ωp

h ,ςh〉L2Λk , (4.9)
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we show the uniform inf-sup condition that

inf
06=(ωh,σh,ϑh)∈Xh

sup
06=(µh,τh,ςh)∈Xh

Bh((ωh,σh,ϑh),(µh,τh,ςh))

‖(ωh,σh,ϑh)‖Xh‖(µh,τh,ςh)‖Xh

> γ > 0. (4.10)

Given (ωh,σh,ϑh) ∈ Xh, we can decompose orthogonally ωh = dk−1
h ρh + ω

H
h + ωyh , with ρh ∈

Wnc
h Λk−1, ω

H
h ∈ Hnc

h Λk, and ωyh orthogonal to N (dk
h,W

nc
h Λk), such that, by the discrete Poincaré

inequality (Theorem 22), ‖ρh‖dk−1
h
6 cP‖dk−1

h ρh‖L2Λk .

Now, set τh = σh− 1
c2

P
ρh, µh =−ωh−dk−1

h σh−ϑh, and ςh =−ϑh +ω
H
h , then

‖(µh,τh,ςh)‖Xh 6C‖(ωh,σh,ϑh)‖Xh ,

and

Bh((ωh,σh,ϑh),(µh,τh,ςh)) = ‖Pk−1
h σh‖2

L2Λk−1 +‖dk−1
h σh‖2

L2Λk +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk −
1
c2

P
〈σh,ρh〉L2Λk−1 .

Note further that

〈σh,ρh〉L2Λk−1 6 ‖σh‖L2Λk−1‖ρh‖L2Λk−1

6
c2

P
2
‖σh‖2

L2Λk−1 +
1

2c2
P
‖ρh‖2

L2Λk−1 6
c2

P
2
‖σh‖2

L2Λk−1 +
1
2
‖dk−1

h ρh‖2
L2Λk

Thus

Bh((ωh,σh,ϑh),(µh,τh,ςh))> ‖Pk−1
h σh‖2

L2Λk−1 +‖dk−1
h σh‖2

L2Λk −
1
2
‖σh‖2

L2Λk−1 +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk

>
1
2
‖σh‖2

L2Λk−1 +(1−Ch2)‖dk−1
h σh‖2

L2Λk +‖dk
hωh‖2

L2Λk+1

+‖ϑh‖2
L2Λk +‖ωH

h ‖
2
L2Λk +

1
c2

P
‖dk−1

h ρh‖L2Λk .

Note that dk
hωyh = dk

hωh, and, by Theorem 22, ‖ωyh‖L2Λk 6C‖dk
hωh‖L2Λk+1 . It follows then

Bh((ωh,σh,ϑh),(µh,τh,ςh))>C‖(ωh,σh,ϑh)‖2
Xh
,

with C depending on the Poincaré inequality only. The inf-sup condition (4.10) is then proved and the
well-posedness of (4.8) is verified.
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4.2. A novel mixed element scheme

It is natural to consider an approach where both dk and δ k are operated in a dual way, and we begin
with this “completely” mixed formulation: to find (ωc,ζ c,σ c,ϑ c) ∈ L2Λk×H∗0 Λk+1×HΛk−1×HΛk,
such that, for (µ,η ,τ,ς) ∈ L2Λk×H∗0 Λk+1×HΛk−1×HΛk,

〈ωc,ς〉L2Λk = 0
〈ζ c,η〉L2Λk+1 −〈ωc,δ k+1η〉L2Λk = 0

〈σ c,τ〉L2Λk−1 −〈ωc,dk−1τ〉L2Λk = 0
〈ϑ c,µ〉L2Λk +〈δ k+1ζ c,µ〉L2Λk +〈dk−1σ c,µ〉L2Λk = 〈f,µ〉L2Λk

.

(4.11)

Lemma 35 For f ∈ L2Λk, the problem (4.11) admits a unique solution (ωc,ζ c,σ c,ϑ c), and

‖ωc‖L2Λk +‖ζ c‖δ k+1
+‖σ c‖dk−1 +‖ϑ c‖L2Λk 6C‖f‖L2Λk . (4.12)

Further, ζ c = dkωc, σ c = δ kωc, and ωc solves (4.2).

Proof For (4.12), we only have to verify Brezzi’s conditions, which hold by the orthogonal Hodge
decomposition

L2
Λ

k = R(dk−1,HΛ
k−1)⊕⊥HΛ

k⊕⊥R(δ k+1,H∗0 Λ
k+1),

together with the closeness of R(dk−1,HΛk−1) and R(δ k+1,H∗0 Λk+1). The remaining assertions are
straightforward. The proof is completed. �

A lowest-degree stable discretization of (4.11) is: find (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ) ∈P0Λk(Gh)×W∗

h0Λk+1×
Wnc

h Λk−1×Hnc
h Λk, such that, for (µh,ηh,τh,ςh) ∈P0Λk(Gh)×W∗

h0Λk+1×Wnc
h Λk−1×Hnc

h Λk,
〈ωc

h ,ςh〉L2Λk = 0
〈Pk+1

h ζ c
h ,P

k+1
h ηh〉L2Λk+1 −〈ωc

h ,δ k+1ηh〉L2Λk = 0
〈Pk−1

h σ c
h ,P

k−1
h τh〉L2Λk−1 −〈ωc

h ,d
k−1
h τh〉L2Λk = 0

〈ϑ c
h ,µh〉L2Λk +〈δ k+1ζ c

h ,µh〉L2Λk +〈dk−1
h σ c

h ,µh〉L2Λk = 〈f,µh〉L2Λk

.

(4.13)

Lemma 36 Given f ∈ L2Λk, the problem (4.13) admits a unique solution (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ), and

‖ωc
h‖L2Λk +‖ζ c

h‖δ k+1
+‖σ c

h‖dk−1
h

+‖ϑ c
h‖L2Λk 6C‖ f‖L2Λk .

The constant C depends on pic(δ k+1,W∗
h0Λk+1) and pic(dk−1

h ,Wnc
h Λk−1).

Again, for the well-posedness of (4.13), we only have to verify Brezzi’s conditions, which holds by
the discrete Hodge decomposition (3.8). The stable decompositions (3.8) comes true by the aid of the
nonconforming space Wnc

h Λk. Hence (4.13) is a new scheme hinted in nonconforming finite element
exterior calculus.
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4.3. Equivalences among lowest-degree mixed element schemes

Lemma 37 Let (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ), (ω

p
h ,σ

p
h ,ϑ

p
h ) and (ωd

h ,ζ
d
h ,ϑ

d
h ) be the solutions of (4.13), (4.8) and

(4.5), respectively. Then

ϑ
d
h = ϑ

c
h , ζ

d
h = ζ

c
h , Pk

hω
d
h = ω

c
h , δ kω

d
h = Pk−1

h σ
c
h , δ k+1ζ

d
h = Pk

hf−dk−1
h σ

c
h −ϑ

c
h , (4.14)

ϑ
p
h = ϑ

c
h , σ

p
h = σ

c
h , Pk

hω
p
h = ω

c
h , dk

hω
p
h = Pk+1

h ζ
c
h , dk−1

h σ
p
h = Pk

hf−δ k+1ζ
c
h −ϑ

c
h , (4.15)

ϑ
d
h = ϑ

p
h , Pk+1

h ζ
d
h = dk

hω
p
h , Pk

hω
d
h = Pk

hω
p
h , δ kω

d
h = Pk−1

h σ
p
h , δ k+1ζ

d
h +dk−1

h σ
p
h = Pk

hf−ϑ
c
h . (4.16)

Proof Let (ωd
h ,ζ

d
h ,ϑ

d
h ) be the solution of (4.5). Then, with a σh ∈Wnc

h Λk−1,

〈ϑ d
h ,µh〉L2Λk + 〈δ k+1ζ

d
h ,µh〉L2Λk + 〈δ kω

d
h ,δ kµh〉L2Λk−1

+ 〈dk−1
h σh,µh〉L2Λk −〈σh,δ kµh〉L2Λk−1 = 〈f,Pk

hµh〉L2Λk ,

for any µh ∈P∗,−
1 Λk(Gh). Choosing arbitrarily µh ∈P0Λk(Gh), we have

ϑ
d
h +δ k+1ζ

d
h +dk−1

h σh = Pk
hf, (4.17)

and
〈δ kω

d
h ,δ kµh〉L2Λk−1 −〈σh,δ kµh〉L2Λk−1 = 0, ∀µh ∈P∗,−

1 Λ
k(Gh),

which leads to that δ kωd
h = Pk−1

h σh. Further, noting that 〈δ kωd
h ,τh〉L2Λk−1 = 〈ωd

h ,d
k
hτh〉L2Λk for τh ∈

Wnc
h Λk−1, we obtain 〈Pk−1

h σh,Pk−1
h τd

h 〉L2Λk−1 −〈ωd
h ,d

k−1
h τh〉L2Λk = 0 for τh ∈Wnc

h Λk−1.
In all, (Pk

hωd
h ,ζ

d
h ,σh,ϑ

d
h ) ∈P0Λk(Gh)×W∗

h0Λk+1×Wnc
h Λk−1×Hnc

h Λk satisfies the system (4.13),
and thus (Pk

hωd
h ,ζ

d
h ,σh,ϑ

d
h ) = (ωc

h ,ζ
c
h ,σ

c
h ,ϑ

c
h ). This proves (4.14). Similarly can (4.15) be proved, and

(4.16) follows by (4.14) and (4.15). The proof is completed. �

The convergence analysis of (4.13) and (4.8) follow directly by Remark 34 and Lemma 37, and we
omit the details here.

4.4. A decomposition processes for solving (4.13)

Firstly, we decomposition (4.13) to two subsystems.

Lemma 38 Let (ωc
h ,ζ

c
h ,σ

c
h ,ϑ

c
h ) be the solution of (4.13), let ζh and ϕh ∈W∗

h0Λk+1 be such that, for
any ηh and ψh ∈W∗

h0Λk+1,{
〈Pk+1

h ζ c
h ,P

k+1
h ηh〉L2Λk+1 −〈δ k+1ϕh,δ k+1ηh〉L2Λk = 0

〈δ k+1ζ c
h ,δ k+1ψh〉L2Λk = 〈f,δ k+1ψh〉L2Λk

, (4.18)

and let σh and ρh ∈Wnc
h Λk−1 be such that, for any τh and ϖh ∈Wnc

h Λk−1,{
〈Pk−1

h σ c
h ,P

k−1
h τh〉L2Λk−1 −〈dk−1

h ρh,dk−1
h τh〉L2Λk = 0

〈dk−1
h σ c

h ,d
k−1
h ϖh〉L2Λk = 〈f,dk−1

h ϖh〉L2Λk
. (4.19)

Then
ζ

c
h = ζh, σ

c
h = σh, and ω

c
h = dk−1

h ρh +δ k+1ϕh. (4.20)
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Proof The existence of solutions to (4.18) and (4.19) is easy to verify, where ζh and σh are uniquely
determined, ϕh is uniquely determined up to N (δ k+1,W∗

h0Λk+1), and ρh is uniquely determined up to
N (dk−1

h ,Wnc
h Λk−1). By the Hodge decomposition of P0Λk(Gh), we can decompose ωh ∈P0Λk(Gh)

to ωc
h = ιc

h + δ k+1ϕc
h + dk−1

h ρc
h with ιc

h ∈ HhΛk, ϕc
h ∈W∗

h0Λk+1 and ρc
h ∈Wnc

h Λk−1, and dk−1
h ρc

h and
δ k+1ϕc

h are uniquely determined. We can similarly write µh = χh +δ k+1ψh +dk−1
h ϖh. Substituting the

decompositions of ωc
h and µh into (4.13) leads to subsystems (4.18) and (4.19), and further (4.20). �

Noting that both (4.18) and (4.19) are each a saddle problem whose solution is not unique, we are
now to further decompose them to series of semi positive definite problems to solve.

Lemma 39 Let (ζ yh ,ξ
y
h ,ϕ

y
h ) be a solution of the sequence of problems below:

1. find ζ yh ∈W∗
h0Λk+1, such that

〈δ k+1ζ
y
h ,δ k+1ψh〉L2Λk = 〈f,δ k+1ψh〉L2Λk , ∀ψh ∈W∗

h0Λ
k+1; (4.21)

2. find ξ yh ∈Wnc
h Λk, such that

〈dk
hξ
y
h ,d

k
hνh〉L2Λk+1 = 〈δ k+1ζ

y
h ,νh〉L2Λk , ∀νh ∈Wnc

h Λ
k; (4.22)

3. find ϕyh ∈W∗
h0Λk+1, such that

〈δ k+1ϕ
y
h ,δ k+1ηh〉L2Λk = 〈dk

hξ
y
h ,ηh〉L2Λk+1 , ∀ηh ∈W∗

h0Λ
k+1. (4.23)

Let (ζh,ϕh) be a solution of (4.18). Then

ζh =
(−1)nk

n− k
κ

δ
h (δ k+1ζ

y
h )+dk

hξ
y
h , and δ k+1ϕh = δ k+1ϕ

y
h . (4.24)

Proof Evidently, (ζ yh ,ξ
y
h ,ϕ

y
h ) exists and is unique up to N (δ k+1,W∗

h0Λk+1)×N (dk
h,W

ncΛk)×
N (δ k+1,W∗

h0Λk+1), further δ k+1ζ yh = δ k+1ζh. Since 〈Pk+1
h ζh,Pk+1

h ηh〉L2Λk+1 = 〈δ k+1ξh,δ k+1ηh〉L2Λk

for any ηh ∈W∗
hΛk+1, it holds that Pk+1

h ζh is orthogonal to N (δ k+1,W∗
h0Λk+1), and thus Pk+1

h ζh ∈
R(dk

h,W
nc
h Λk). Namely, there exists a ξ yh ∈Wnc

h Λk, such that ζh = (ζh−Pk+1
h ζh)+dk

hξ yh . As for any
νh ∈ Wnc

h Λk, 〈δ k+1ζh,νh〉L2Λk = 〈ζh,dk
hνh〉L2Λk+1 , it holds further that, with dk

hνh being piecewise
constant, 〈dk

hξ yh ,d
k
hνh〉L2Λk+1 = 〈δ k+1ζ yh ,νh〉L2Λk . It follows by the homotopy formula that ζh =

(−1)nk

n−k κδ
h (δ k+1ζ yh ) + dk

hξ yh . Then 〈δ k+1ϕh,δ k+1ηh〉L2Λk = 〈Pk+1
h ζ c

h ,P
k+1
h ηh〉L2Λk+1 = 〈dk

hξ yh ,ηh〉L2Λk+1

for ηh ∈W∗
h0Λk+1, and it thus follows that δ k+1ϕh = δ k+1ϕyh . The proof is completed. �

Similarly we have the decomposition of (4.19).

Lemma 40 Let (σyh , ι
y
h ,ρ

y
h ) be a solution of the sequence of problems below:

1. find σyh ∈Wnc
h Λk−1, such that

〈dk−1
h σ

y
h ,d

k−1
h ϖh〉L2Λk = 〈f,dk−1

h ϖh〉L2Λk , ∀ϖh ∈Wnc
h Λ

k−1; (4.25)
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2. find ιyh ∈W∗
h0Λk, such that

〈δ kι
y
h ,δ kχh〉L2Λk−1 = 〈dk−1

σ
y
h ,χh〉L2Λk , ∀χh ∈W∗

h0Λ
k; (4.26)

3. find ρyh ∈Wnc
h Λk−1, such that

〈dk−1
h ρ

y
h ,d

k−1
h τh〉L2Λk = 〈δ kι

y
h ,τh〉L2Λk−1 , ∀τh ∈Wnc

h Λ
k−1. (4.27)

Let (σh,ρh) be one solution of (4.19). Then

σh =
1
k

κh(dk−1
h σ

y
h )+δ kι

y
h , and dk−1

h σh = dk−1
h σ

y
h . (4.28)

Remark 41 It is illustrated that the system (4.13), as well as (4.5) and (4.3), can be transferred to
a series of semi positive definite problems to solve. Particularly, these systems can be solved without
knowledge of HhΛk, which consists of globally supported functions and which cannot generally be
figured out. A decomposition similar to Lemma 38 can be carried out onto (4.5) without the aid of
Wnc

h Λk and onto (4.8) without the aid of W∗
h0Λk. However, the further decomposition of (4.18) and

(4.19) will rely on the combinational utilization of Wnc
h Λk and W∗

h0Λk together.

5. Concluding remarks

The basis of the nonconforming finite element exterior calculus in this paper is the unified construction
of finite element spaces for HΛk in Rn, extending the Crouzeix-Raviart paradigm to differential forms.
These spaces are not only conceptual objectives, but also practical discretization tools. Beyond error
estimation as usual, differences from existing classical schemes are preliminarily demonstrated using
eigenvalue problems as examples, and can be further investigated through additional applications, for
instance where a locally defined stable interpolator matters. Actually, the role of a locally-defined stable
interpolator used to be illustrated by the correct computation of the convex variational problems (Ortner,
2011). This paper focuses on pure Dirichlet and pure Neumann boundary conditions. It is noteworthy
that mixed boundary conditions have recently been investigated in Licht (2019a),Christiansen & Licht
(2020), and Licht (2017). The new approach also works for that and can be discussed in future.

A new approach to impose inter-cell continuity is indicated, and finite element spaces can be
constructed in future for various problems by this new approach. This approach also suggests potential
extensions to non-simplicial meshes, as well as nonstandard and nonconforming meshes which will be
discussed in future. Inspired by Lee & Winther (2018), discretization scheme for the Hodge Laplace
problem with local derivatives and local coderivatives will be studied in future. The present approach is
to be generalized to the primal discretization of Hodge-Laplace problems which needs nonconforming
finite element spaces with proper continuity.

Recently, in two and three dimensions, discrete Helmholtz decompositions have been explored
not only for piecewise constant but also for piecewise affine vector and tensor fields (Bringmann et al.,
2024); it is intriguing to observe that the non-Ciarlet type finite element spaces of Fortin & Soulie (1983)
and Zhang (2021) have been utilized as a basis therein. The generalization of the results presented in this
manuscript to higher-degree vector and tensor fields in higher dimensions will be discussed in future.

The notion of reconstructing and preserving adjoint relation is emphasized in the present paper.
Its basic role can be recognized via the duality-based argument designed to derive uniform discrete
Poincaré inequalities leveraging the adjoint relationship between d and δ , which formulates some
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analogue of the closed range theorem; a quantifiable version of the closed range theorem is given in
Section B for a comparison. Further, relevant to the equivalences established in Marini (1985) between
the Crouzeix-Raviart element discretization and the Raviart-Thomas element discretization for Poisson
equations, the equivalence between the conforming and nonconforming finite element schemes on the
Hodge Laplace problem in Section 4 is the generalization of Marini (1985) with new interpretations.
This novel notion can be expected to find more other applications in future.
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A. Proofs of Lemmas 23, 24 and 25

Proof of Lemma 23 Decompose Wnc
h Λk = N (dk

h,W
nc
h Λk)⊕⊥ (Wnc

h Λk)y, orthogonal in L2Λk(Ω).
Given σh ∈ (Wnc

h Λk)y, decompose orthogonally σh = σ̊h + σyh , such that σ̊h ∈ P0Λk(Gh)

and σ
y
h ∈

⊕
T∈Gh

EΩ
T κT (P0Λ

k+1(T )). As N (dk
h,W

nc
h Λk) ⊂ P0Λk(T ), we have further σyh is

orthogonal to N (dk
h,W

nc
h Λk); therefore, σ̊h is orthogonal to N (dk

h,W
nc
h Λk), and further σ̊h ∈

R(δ k+1,W∗
h0Λk+1) by Theorem 27. Decompose W∗

h0Λk+1 = N (δ k+1,W∗
h0Λk+1)⊕⊥ (W∗

h0Λk+1)y.
Then R(δ k+1,W∗

h0Λk+1) = R(δ k+1,(W∗
h0Λk+1)y). Therefore,

‖σ̊h‖L2Λk = sup
µh∈(W∗h0Λk+1)y

〈σ̊h,δ k+1µh〉L2Λk

‖δ k+1µh‖L2Λk
= sup

µh∈(W∗h0Λk+1)y

〈σyh ,δ k+1µh〉L2Λk + 〈dk
hσyh ,µh〉L2Λk+1

‖δ k+1µh‖L2Λk

6 ‖σyh ‖L2Λk +‖dk
hσ
y
h ‖L2Λk+1 sup

µh∈(W∗h0Λk+1)y

‖µh‖L2Λk+1

‖δ k+1µh‖L2Λk

6 ‖dk
hσh‖L2Λk+1pic(dk

h,P
−
1 Λ

k(Gh))+‖dk
hσ
y
h ‖L2Λk+1pic(δ k+1,W∗

h0Λ
k+1).

Then ‖σh‖L2Λk 6 ‖σ̊h‖L2Λk +‖σyh ‖L2Λk 6 ‖dk
hσh‖L2Λk+1(2pic(dk

h,P
−
1 Λ

k(Gh))+pic(δ k+1,W∗
h0Λ

k+1)).
This completes the proof. �

Remark 42 No continuous problem or Sobolev space is used as a bridge here, and this is a direct
relation based on the discrete adjoint connection between W∗

h0Λk+1 and Wnc
h Λk.

Lemma 43 There exists a constant Ck,n, depending on the regularity of T , such that

‖µ‖L2Λk(T ) 6Ck,nhT‖dk
µ‖L2Λk+1(T ), for µ ∈ κT (P0Λ

k+1(T )). (A.1)
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Proof Given µ = ∑
α∈IXk+1,n

Cα

(
k+1

∑
j=1

(−1) j+1x̃α j dxα1 ∧ dxα2 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1

)
,

|µ|2H1Λk(T ) =

∥∥∥∥∥∥ ∑
α∈IXk,n

Cα

k+1

∑
j=1

(−1) j+1
∇x̃α j dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1

∥∥∥∥∥∥
2

L2Λk(T )

=

〈
∑

α∈IXk,n

Cα

k+1

∑
j=1

(−1) j+1
∇x̃α j dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1 ,

∑
α ′∈IXk,n

Cα ′

k+1

∑
i=1

(−1)i+1
∇x̃α ′i dxα ′1 ∧·· ·∧ dxα ′i−1 ∧ dxα ′i+1 ∧·· ·∧ dxα ′k+1

〉
L2Λk(T )

= ∑
α∈IXk,n

∑
α ′∈IXk,n

CαCα ′

k+1

∑
j=1

k+1

∑
i=1

(−1) j+ieα j · eα i

〈
dxα1 ∧·· ·∧ dxα j−1 ∧ dxα j+1 ∧·· ·∧ dxαk+1 ,

dxα ′1 ∧·· ·∧ dxα ′i−1 ∧ dxα ′i+1 ∧·· ·∧ dxα ′k+1

〉
L2Λk(T )

= (k+1)|T |∑
α

C2
α ,

and
∥∥∥dk

µ

∥∥∥2

L2Λk+1(T )
= (k + 1)2

∥∥∥∥∑
α

Cα dxα1 ∧ dxα2 ∧·· ·∧ dxαk+1

∥∥∥∥2

L2Λk+1(T )

= (k + 1)2|T |∑
α

C2
α .

Namely
‖dk

µ‖L2Λk+1(T ) =
√

k+1|µ|H1Λk(T ).

Therefore, by noting that
∫

T x̃ j = 0, with a constant Cn depending on the regularity of T , we obtain

‖µ‖L2Λk(T ) 6CnhT |µ|H1Λk(T ) =Cn(k+1)−1/2hT‖dk
µ‖L2Λk+1(T ).

This completes the proof. �

Proof of Lemma 24 Evidently,

pic(dk
h,P

−
1 Λ

k(Gh)) = sup
τh ∈

⊕
T∈Gh

EΩ
T κT (P0Λ

k+1(T ))

‖τh‖L2Λk

‖dk
hτh‖L2Λk+1

= max
T∈Gh

sup
τ∈κT (P0Λk+1(T ))

‖τ‖L2Λ(T )

‖dkτ‖L2Λk+1(T )
. (A.2)

By Lemma 43 and (A.2), pic(dk
h,P

−
1 Λk(Gh)) is of O(h) order. �

Proof of Lemma 25 By virtue of Lemma 23 and Remark 17, pic(δ k+1,W∗
h0Λk+1) is controlled by

pic(dk
h,W

nc
h Λk) the same way. Further by Lemma 24, we obtain Lemma 25. �
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B. A quantifiable closed range theorem

In this part, we establish a quantifiable version of the classical closed range theorem, in order to show
how Lemma 25 can be viewed as a discrete analogue of the closed range theorem.

Let X andY be two Hilbert spaces with respective inner products 〈·, ·〉X and 〈·, ·〉Y, and let (T,D) :
X→Y be an unbounded linear operator, D being the domain dense in X. The adjoint operator of
(T,D), denoted by (T∗,D∗), is defined by

〈T∗w,v〉X = 〈w,Tv〉Y, ∀v ∈ D, (B.1)

and the domain D∗ consists of such w ∈Y that there exists an element in X taken as T∗w to satisfy
(B.1). The closed range theorem (cf. Arnold (2018); Yosida (2012); Kato (2013); Brezis (2010) and
other textbooks) asserts that

R(T,D) is closed ⇐⇒ R(T∗,D∗) is closed. (B.2)

It further follows by Lemma 21 that

pic(T,D)< ∞ ⇐⇒ pic(T∗,D∗)< ∞. (B.3)

The theorem below further gives a preciser quantification of the closed range theorem.

Theorem 44 For (T,D) : X→Y and (T,D) :Y → X a pair of closed densely defined adjoint
operators,

pic(T,D) = pic(T,D). (B.4)

Proof Recalling the Helmholtz decomposition X = N (T,D)⊕⊥R(T,D), we have

Dy = D∩ (N (T,D))⊥ = D∩R(T,D). (B.5)

Therefore, provided that 0 < pic(T,D)< ∞ and thus R(T,D) =R(T,D), given v∈Dy, there exists
aw ∈Dy, such that v =Tw, then ‖w‖Y 6 pic(T,D)‖v‖X and

‖v‖2
X = 〈v,v〉X = 〈v,Tw〉X = 〈Tv,w〉Y 6 ‖Tv‖Y‖w‖Y 6 pic(T,D)‖Tv‖Y‖v‖X.

Therefore, ‖v‖X 6 pic(T,D)‖Tv‖X for any v ∈ Dy and pic(T,D) 6 pic(T,D) < ∞. Similarly, ∞ >
pic(T,D)> pic(T,D); note that (T,D) is the adjoint operator of (T,D). Namely, if one of pic(T,D)
and pic(T,D) is finitely positive, then pic(T,D) = pic(T,D).

If pic(T,D) = 0, then R(T,D) = {0} and Dy = {0}. It follows then pic(T,D) = 0. Finally, if one
of pic(T,D) and pic(T,D) is +∞, then so is the other. The proof is completed. �
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